Notation for two qubit composite product state Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Compute average value of two-qubit systemWhat can I deduce about $f(x)$ if $f$ is balanced or constant?What does the notation $lvert underlinex rangle$ mean?How do I show that a two-qubit state is an entangled state?How is a single qubit fundamentally different from a classical coin spinning in the air?Why is the state of multiple qubits given by their tensor product?Notation for two entangled registersA question about notation for quantum statesA two qubit state in a special formConcurrence for a two qubit state

Product of Mrówka space and one point compactification discrete space.

Exposing GRASS GIS add-on in QGIS Processing framework?

Converted a Scalar function to a TVF function for parallel execution-Still running in Serial mode

Why is Nikon 1.4g better when Nikon 1.8g is sharper?

Would it be possible to dictate a bech32 address as a list of English words?

Did Mueller's report provide an evidentiary basis for the claim of Russian govt election interference via social media?

Hangman Game with C++

Why does it sometimes sound good to play a grace note as a lead in to a note in a melody?

Take 2! Is this homebrew Lady of Pain warlock patron balanced?

Find 108 by using 3,4,6

What initially awakened the Balrog?

Selecting user stories during sprint planning

Why are vacuum tubes still used in amateur radios?

What is "gratricide"?

How would a mousetrap for use in space work?

How many serial port on PI3

Why do early math courses focus on the cross sections of a cone and not on other 3D objects?

Why is it faster to reheat something than it is to cook it?

Project Euler #1 in C++

Generate an RGB colour grid

What is the difference between globalisation and imperialism?

Is there hard evidence that the grant peer review system performs significantly better than random?

Most bit efficient text communication method?

Belief In God or Knowledge Of God. Which is better?



Notation for two qubit composite product state



Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Compute average value of two-qubit systemWhat can I deduce about $f(x)$ if $f$ is balanced or constant?What does the notation $lvert underlinex rangle$ mean?How do I show that a two-qubit state is an entangled state?How is a single qubit fundamentally different from a classical coin spinning in the air?Why is the state of multiple qubits given by their tensor product?Notation for two entangled registersA question about notation for quantum statesA two qubit state in a special formConcurrence for a two qubit state



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








3












$begingroup$


In my lecture notes on quantum information processing my lecturer gives an example of composite systems as $|phirangle=|0rangle |0rangle=|00rangle$. I understand that if we have two qubits then its product state will be in 2n dimensional Hilbert space and I understand the 2 qubit state $|00rangle$ to be represented in matrix representation as $beginpmatrix 1 & 1 \ 0 & 0 endpmatrix$ (if that is wrong please do correct my misunderstanding though). My question is about the notation $|0rangle|0rangle=|00rangle$, how can we calculate this with matrices on the left-hand side we have a 2 by 1 matrix multiplied by a 2 by 1 matrix which cannot be calculated. I thought perhaps it was a matter of direct products but my calculation led to an incorrect result there too.



Could anyone clarify this for me, please?



Edit: It occurred to me that I think I'm mistaken about the matrix representation of $|00rangle$, I think it would make more sense to be $beginpmatrix 1 \ 0\0\0 endpmatrix$ in which case the direct product does work and I should take the notation $|0rangle|0rangle$ to be a shorthand for the direct product not the multiplication of two matrices, is that correct?










share|improve this question









New contributor




can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$


















    3












    $begingroup$


    In my lecture notes on quantum information processing my lecturer gives an example of composite systems as $|phirangle=|0rangle |0rangle=|00rangle$. I understand that if we have two qubits then its product state will be in 2n dimensional Hilbert space and I understand the 2 qubit state $|00rangle$ to be represented in matrix representation as $beginpmatrix 1 & 1 \ 0 & 0 endpmatrix$ (if that is wrong please do correct my misunderstanding though). My question is about the notation $|0rangle|0rangle=|00rangle$, how can we calculate this with matrices on the left-hand side we have a 2 by 1 matrix multiplied by a 2 by 1 matrix which cannot be calculated. I thought perhaps it was a matter of direct products but my calculation led to an incorrect result there too.



    Could anyone clarify this for me, please?



    Edit: It occurred to me that I think I'm mistaken about the matrix representation of $|00rangle$, I think it would make more sense to be $beginpmatrix 1 \ 0\0\0 endpmatrix$ in which case the direct product does work and I should take the notation $|0rangle|0rangle$ to be a shorthand for the direct product not the multiplication of two matrices, is that correct?










    share|improve this question









    New contributor




    can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      3












      3








      3





      $begingroup$


      In my lecture notes on quantum information processing my lecturer gives an example of composite systems as $|phirangle=|0rangle |0rangle=|00rangle$. I understand that if we have two qubits then its product state will be in 2n dimensional Hilbert space and I understand the 2 qubit state $|00rangle$ to be represented in matrix representation as $beginpmatrix 1 & 1 \ 0 & 0 endpmatrix$ (if that is wrong please do correct my misunderstanding though). My question is about the notation $|0rangle|0rangle=|00rangle$, how can we calculate this with matrices on the left-hand side we have a 2 by 1 matrix multiplied by a 2 by 1 matrix which cannot be calculated. I thought perhaps it was a matter of direct products but my calculation led to an incorrect result there too.



      Could anyone clarify this for me, please?



      Edit: It occurred to me that I think I'm mistaken about the matrix representation of $|00rangle$, I think it would make more sense to be $beginpmatrix 1 \ 0\0\0 endpmatrix$ in which case the direct product does work and I should take the notation $|0rangle|0rangle$ to be a shorthand for the direct product not the multiplication of two matrices, is that correct?










      share|improve this question









      New contributor




      can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      In my lecture notes on quantum information processing my lecturer gives an example of composite systems as $|phirangle=|0rangle |0rangle=|00rangle$. I understand that if we have two qubits then its product state will be in 2n dimensional Hilbert space and I understand the 2 qubit state $|00rangle$ to be represented in matrix representation as $beginpmatrix 1 & 1 \ 0 & 0 endpmatrix$ (if that is wrong please do correct my misunderstanding though). My question is about the notation $|0rangle|0rangle=|00rangle$, how can we calculate this with matrices on the left-hand side we have a 2 by 1 matrix multiplied by a 2 by 1 matrix which cannot be calculated. I thought perhaps it was a matter of direct products but my calculation led to an incorrect result there too.



      Could anyone clarify this for me, please?



      Edit: It occurred to me that I think I'm mistaken about the matrix representation of $|00rangle$, I think it would make more sense to be $beginpmatrix 1 \ 0\0\0 endpmatrix$ in which case the direct product does work and I should take the notation $|0rangle|0rangle$ to be a shorthand for the direct product not the multiplication of two matrices, is that correct?







      quantum-state tensor-product notation






      share|improve this question









      New contributor




      can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question









      New contributor




      can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question








      edited Apr 14 at 21:50









      Sanchayan Dutta

      6,69641556




      6,69641556






      New contributor




      can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked Apr 14 at 20:26









      can'tcauchycan'tcauchy

      1405




      1405




      New contributor




      can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          $|0rangle|0rangle$ is actually a shorthand for $|0rangle otimes |0rangle$ or $beginbmatrix 1 \ 0 endbmatrix otimes beginbmatrix 1 \ 0endbmatrix $ where $otimes$ stands for the tensor product or essentially the Kronecker product. To quote Wikipedia:




          In mathematics, the Kronecker product, denoted by $otimes$, is an operation
          on two matrices of arbitrary size resulting in a block matrix. It is a
          generalization of the outer product (which is denoted by the same
          symbol) from vectors to matrices, and gives the matrix of the tensor
          product with respect to a standard choice of basis
          . The Kronecker
          product should not be confused with the usual matrix multiplication,
          which is an entirely different operation
          .




          Now the standard choice of basis for a two-qubit system is:



          $00rangle = beginbmatrix 1 \ 0 \ 0 \ 0 endbmatrix, $



          If you wish, you can also represent the basis as (if you strictly take $otimes$ as the outer product):



          $10rangle = beginbmatrix 0 & 0 \ 1 & 0 endbmatrix, $



          but then while carrying out calculations like determining the action of a quantum gate on a composite state you'd have to write the state using the vector representation (carefully read the linked Mathematics SE answer).



          The key point here is that don't be bent on thinking of these linear algebraic operations in terms of matrices, but rather think in terms of linear maps. You'll get more comfortable with these things once you learn about tensors!



          P.S: Kronecker product and outer product confusion






          share|improve this answer











          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "694"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );






            can'tcauchy is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquantumcomputing.stackexchange.com%2fquestions%2f5911%2fnotation-for-two-qubit-composite-product-state%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            $|0rangle|0rangle$ is actually a shorthand for $|0rangle otimes |0rangle$ or $beginbmatrix 1 \ 0 endbmatrix otimes beginbmatrix 1 \ 0endbmatrix $ where $otimes$ stands for the tensor product or essentially the Kronecker product. To quote Wikipedia:




            In mathematics, the Kronecker product, denoted by $otimes$, is an operation
            on two matrices of arbitrary size resulting in a block matrix. It is a
            generalization of the outer product (which is denoted by the same
            symbol) from vectors to matrices, and gives the matrix of the tensor
            product with respect to a standard choice of basis
            . The Kronecker
            product should not be confused with the usual matrix multiplication,
            which is an entirely different operation
            .




            Now the standard choice of basis for a two-qubit system is:



            $00rangle = beginbmatrix 1 \ 0 \ 0 \ 0 endbmatrix, $



            If you wish, you can also represent the basis as (if you strictly take $otimes$ as the outer product):



            $10rangle = beginbmatrix 0 & 0 \ 1 & 0 endbmatrix, $



            but then while carrying out calculations like determining the action of a quantum gate on a composite state you'd have to write the state using the vector representation (carefully read the linked Mathematics SE answer).



            The key point here is that don't be bent on thinking of these linear algebraic operations in terms of matrices, but rather think in terms of linear maps. You'll get more comfortable with these things once you learn about tensors!



            P.S: Kronecker product and outer product confusion






            share|improve this answer











            $endgroup$

















              3












              $begingroup$

              $|0rangle|0rangle$ is actually a shorthand for $|0rangle otimes |0rangle$ or $beginbmatrix 1 \ 0 endbmatrix otimes beginbmatrix 1 \ 0endbmatrix $ where $otimes$ stands for the tensor product or essentially the Kronecker product. To quote Wikipedia:




              In mathematics, the Kronecker product, denoted by $otimes$, is an operation
              on two matrices of arbitrary size resulting in a block matrix. It is a
              generalization of the outer product (which is denoted by the same
              symbol) from vectors to matrices, and gives the matrix of the tensor
              product with respect to a standard choice of basis
              . The Kronecker
              product should not be confused with the usual matrix multiplication,
              which is an entirely different operation
              .




              Now the standard choice of basis for a two-qubit system is:



              $00rangle = beginbmatrix 1 \ 0 \ 0 \ 0 endbmatrix, $



              If you wish, you can also represent the basis as (if you strictly take $otimes$ as the outer product):



              $10rangle = beginbmatrix 0 & 0 \ 1 & 0 endbmatrix, $



              but then while carrying out calculations like determining the action of a quantum gate on a composite state you'd have to write the state using the vector representation (carefully read the linked Mathematics SE answer).



              The key point here is that don't be bent on thinking of these linear algebraic operations in terms of matrices, but rather think in terms of linear maps. You'll get more comfortable with these things once you learn about tensors!



              P.S: Kronecker product and outer product confusion






              share|improve this answer











              $endgroup$















                3












                3








                3





                $begingroup$

                $|0rangle|0rangle$ is actually a shorthand for $|0rangle otimes |0rangle$ or $beginbmatrix 1 \ 0 endbmatrix otimes beginbmatrix 1 \ 0endbmatrix $ where $otimes$ stands for the tensor product or essentially the Kronecker product. To quote Wikipedia:




                In mathematics, the Kronecker product, denoted by $otimes$, is an operation
                on two matrices of arbitrary size resulting in a block matrix. It is a
                generalization of the outer product (which is denoted by the same
                symbol) from vectors to matrices, and gives the matrix of the tensor
                product with respect to a standard choice of basis
                . The Kronecker
                product should not be confused with the usual matrix multiplication,
                which is an entirely different operation
                .




                Now the standard choice of basis for a two-qubit system is:



                $00rangle = beginbmatrix 1 \ 0 \ 0 \ 0 endbmatrix, $



                If you wish, you can also represent the basis as (if you strictly take $otimes$ as the outer product):



                $10rangle = beginbmatrix 0 & 0 \ 1 & 0 endbmatrix, $



                but then while carrying out calculations like determining the action of a quantum gate on a composite state you'd have to write the state using the vector representation (carefully read the linked Mathematics SE answer).



                The key point here is that don't be bent on thinking of these linear algebraic operations in terms of matrices, but rather think in terms of linear maps. You'll get more comfortable with these things once you learn about tensors!



                P.S: Kronecker product and outer product confusion






                share|improve this answer











                $endgroup$



                $|0rangle|0rangle$ is actually a shorthand for $|0rangle otimes |0rangle$ or $beginbmatrix 1 \ 0 endbmatrix otimes beginbmatrix 1 \ 0endbmatrix $ where $otimes$ stands for the tensor product or essentially the Kronecker product. To quote Wikipedia:




                In mathematics, the Kronecker product, denoted by $otimes$, is an operation
                on two matrices of arbitrary size resulting in a block matrix. It is a
                generalization of the outer product (which is denoted by the same
                symbol) from vectors to matrices, and gives the matrix of the tensor
                product with respect to a standard choice of basis
                . The Kronecker
                product should not be confused with the usual matrix multiplication,
                which is an entirely different operation
                .




                Now the standard choice of basis for a two-qubit system is:



                $00rangle = beginbmatrix 1 \ 0 \ 0 \ 0 endbmatrix, $



                If you wish, you can also represent the basis as (if you strictly take $otimes$ as the outer product):



                $10rangle = beginbmatrix 0 & 0 \ 1 & 0 endbmatrix, $



                but then while carrying out calculations like determining the action of a quantum gate on a composite state you'd have to write the state using the vector representation (carefully read the linked Mathematics SE answer).



                The key point here is that don't be bent on thinking of these linear algebraic operations in terms of matrices, but rather think in terms of linear maps. You'll get more comfortable with these things once you learn about tensors!



                P.S: Kronecker product and outer product confusion







                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited Apr 14 at 21:27

























                answered Apr 14 at 21:14









                Sanchayan DuttaSanchayan Dutta

                6,69641556




                6,69641556




















                    can'tcauchy is a new contributor. Be nice, and check out our Code of Conduct.









                    draft saved

                    draft discarded


















                    can'tcauchy is a new contributor. Be nice, and check out our Code of Conduct.












                    can'tcauchy is a new contributor. Be nice, and check out our Code of Conduct.











                    can'tcauchy is a new contributor. Be nice, and check out our Code of Conduct.














                    Thanks for contributing an answer to Quantum Computing Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquantumcomputing.stackexchange.com%2fquestions%2f5911%2fnotation-for-two-qubit-composite-product-state%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    getting Checkpoint VPN SSL Network Extender working in the command lineHow to connect to CheckPoint VPN on Ubuntu 18.04LTS?Will the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayVPN SSL Network Extender in FirefoxLinux Checkpoint SNX tool configuration issuesCheck Point - Connect under Linux - snx + OTPSNX VPN Ububuntu 18.XXUsing Checkpoint VPN SSL Network Extender CLI with certificateVPN with network manager (nm-applet) is not workingWill the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayImport VPN config files to NetworkManager from command lineTrouble connecting to VPN using network-manager, while command line worksStart a VPN connection with PPTP protocol on command linestarting a docker service daemon breaks the vpn networkCan't connect to vpn with Network-managerVPN SSL Network Extender in FirefoxUsing Checkpoint VPN SSL Network Extender CLI with certificate

                    Cannot Extend partition with GParted The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Community Moderator Election ResultsCan't increase partition size with GParted?GParted doesn't recognize the unallocated space after my current partitionWhat is the best way to add unallocated space located before to Ubuntu 12.04 partition with GParted live?I can't figure out how to extend my Arch home partition into free spaceGparted Linux Mint 18.1 issueTrying to extend but swap partition is showing as Unknown in Gparted, shows proper from fdiskRearrange partitions in gparted to extend a partitionUnable to extend partition even though unallocated space is next to it using GPartedAllocate free space to root partitiongparted: how to merge unallocated space with a partition

                    Marilyn Monroe Ny fiainany manokana | Jereo koa | Meny fitetezanafanitarana azy.