Quantum Toffoli gate equation Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Does quantum control allow to implement any gate?Obtaining gate $e^-iDelta t Z$ from elementary gatesExplicit Conversion Between Universal Gate SetsUnderstanding the Group Leaders Optimization AlgorithmMatrix representation and CX gateComposing the CNOT gate as a tensor product of two level matricesRewrite circuit with measurements with unitariesHow to understand the operators for watermarking schemes?Implementing these $N×N$ matrices on $log N$ qubitsCalculating entries of unitary transformation

Why was the term "discrete" used in discrete logarithm?

Should I discuss the type of campaign with my players?

51k Euros annually for a family of 4 in Berlin: Is it enough?

Echoing a tail command produces unexpected output?

Error "illegal generic type for instanceof" when using local classes

Why did the IBM 650 use bi-quinary?

3 doors, three guards, one stone

Why is "Consequences inflicted." not a sentence?

Can a non-EU citizen traveling with me come with me through the EU passport line?

How can I make names more distinctive without making them longer?

Can a USB port passively 'listen only'?

What would be the ideal power source for a cybernetic eye?

Fundamental Solution of the Pell Equation

How to deal with a team lead who never gives me credit?

Is it true that "carbohydrates are of no use for the basal metabolic need"?

How to align text above triangle figure

Resolving to minmaj7

How to find out what spells would be useless to a blind NPC spellcaster?

porting install scripts : can rpm replace apt?

How does debian/ubuntu knows a package has a updated version

How to Merge Multiple Columns in to Two Columns based on Column 1 Value?

What is a non-alternating simple group with big order, but relatively few conjugacy classes?

How to run gsettings for another user Ubuntu 18.04.2 LTS

String `!23` is replaced with `docker` in command line



Quantum Toffoli gate equation



Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Does quantum control allow to implement any gate?Obtaining gate $e^-iDelta t Z$ from elementary gatesExplicit Conversion Between Universal Gate SetsUnderstanding the Group Leaders Optimization AlgorithmMatrix representation and CX gateComposing the CNOT gate as a tensor product of two level matricesRewrite circuit with measurements with unitariesHow to understand the operators for watermarking schemes?Implementing these $N×N$ matrices on $log N$ qubitsCalculating entries of unitary transformation



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








3












$begingroup$


I was reading a research article on quantum computing and didn't understand the tensor notations for the unitary operations. The article defined two controlled gates.



Let $U_2^m$ be a $2^m times 2^m$ unitary matrix, $I_2^m$ be a $2^m times 2^m$ identity matrix. Then, controlled gates $C_n^j(U_2^m)$ and $V_n^j(U_2^m)$ with $n$ control qubits and $m$ target qubits are defined by $$ C_n^j(U_2^m)=(|jrangle langle j|) otimes U_2^m+ sum_i=0,i neq j^2^n-1((|irangle langle i| otimes I_2^m$$



$$ V_n^j(U_2^m) = U_2^m otimes (|jrangle langle j|) + sum_i=0,i neq j^2^n-1( I_2^m otimes (|irangle langle i| ))$$
Then they say that $C_2^j(X)$ and $V_2^j(X) $are toffoli gates.
Can someone explain the equations that are given
and how does this special case be a Toffoli?










share|improve this question











$endgroup$


















    3












    $begingroup$


    I was reading a research article on quantum computing and didn't understand the tensor notations for the unitary operations. The article defined two controlled gates.



    Let $U_2^m$ be a $2^m times 2^m$ unitary matrix, $I_2^m$ be a $2^m times 2^m$ identity matrix. Then, controlled gates $C_n^j(U_2^m)$ and $V_n^j(U_2^m)$ with $n$ control qubits and $m$ target qubits are defined by $$ C_n^j(U_2^m)=(|jrangle langle j|) otimes U_2^m+ sum_i=0,i neq j^2^n-1((|irangle langle i| otimes I_2^m$$



    $$ V_n^j(U_2^m) = U_2^m otimes (|jrangle langle j|) + sum_i=0,i neq j^2^n-1( I_2^m otimes (|irangle langle i| ))$$
    Then they say that $C_2^j(X)$ and $V_2^j(X) $are toffoli gates.
    Can someone explain the equations that are given
    and how does this special case be a Toffoli?










    share|improve this question











    $endgroup$














      3












      3








      3





      $begingroup$


      I was reading a research article on quantum computing and didn't understand the tensor notations for the unitary operations. The article defined two controlled gates.



      Let $U_2^m$ be a $2^m times 2^m$ unitary matrix, $I_2^m$ be a $2^m times 2^m$ identity matrix. Then, controlled gates $C_n^j(U_2^m)$ and $V_n^j(U_2^m)$ with $n$ control qubits and $m$ target qubits are defined by $$ C_n^j(U_2^m)=(|jrangle langle j|) otimes U_2^m+ sum_i=0,i neq j^2^n-1((|irangle langle i| otimes I_2^m$$



      $$ V_n^j(U_2^m) = U_2^m otimes (|jrangle langle j|) + sum_i=0,i neq j^2^n-1( I_2^m otimes (|irangle langle i| ))$$
      Then they say that $C_2^j(X)$ and $V_2^j(X) $are toffoli gates.
      Can someone explain the equations that are given
      and how does this special case be a Toffoli?










      share|improve this question











      $endgroup$




      I was reading a research article on quantum computing and didn't understand the tensor notations for the unitary operations. The article defined two controlled gates.



      Let $U_2^m$ be a $2^m times 2^m$ unitary matrix, $I_2^m$ be a $2^m times 2^m$ identity matrix. Then, controlled gates $C_n^j(U_2^m)$ and $V_n^j(U_2^m)$ with $n$ control qubits and $m$ target qubits are defined by $$ C_n^j(U_2^m)=(|jrangle langle j|) otimes U_2^m+ sum_i=0,i neq j^2^n-1((|irangle langle i| otimes I_2^m$$



      $$ V_n^j(U_2^m) = U_2^m otimes (|jrangle langle j|) + sum_i=0,i neq j^2^n-1( I_2^m otimes (|irangle langle i| ))$$
      Then they say that $C_2^j(X)$ and $V_2^j(X) $are toffoli gates.
      Can someone explain the equations that are given
      and how does this special case be a Toffoli?







      quantum-gate tensor-product






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Apr 12 at 18:30









      Sanchayan Dutta

      6,68641556




      6,68641556










      asked Apr 12 at 13:16









      UpstartUpstart

      1657




      1657




















          1 Answer
          1






          active

          oldest

          votes


















          4












          $begingroup$

          Here $i$ and $j$ are bit strings of size $n$. Correspondingly, $|irangle$, $|jrangle$ are some basis vectors in $2^n$-dimensional space, that corresponds to $n$-qubit register.



          Those controlled operations $C$ and $V$ act on $(n+m)$-qubit space. You can consider first $n$ qubits as control register and last $m$ qubits as target register. Now, $C_n^j(U_2^m)$ applies unitary operation $U_2^m$ on the target register if control register is in the state $|jrangle$ and applies $I_2^m$ (i.e. do nothing) otherwise. You can see this by applying $C_n^j(U_2^m)$ on some vector $|xrangle|yrangle$ from the $(n+m)$-qubit space, where $x$ is some $n$-bit string:



          $$
          C_n^j(U_2^m) |xrangle|yrangle = (|jrangle langle j|xrangle) otimes U_2^m |yrangle+ sum_i=0,i neq j^2^n-1((|irangle langle i| x rangle) otimes |yrangle)
          $$



          Here $|irangle langle i|xrangle = 0$ if $xneq i$ and it equals $|irangle$ if $x=i$.
          Hence
          $$C_n^j(U_2^m) |xrangle|yrangle = |jrangle otimes U_2^m |yrangle + 0 = |xrangle otimes U_2^m |yrangle ~~textif~~ x=j$$
          and
          $$C_n^j(U_2^m) |xrangle|yrangle = 0 + |xrangle|yrangle = |xrangle|yrangle ~~textif~~ xneq j.$$



          Gate $V_n^j(U_2^m)$ is basically the same as $C_n^j(U_2^m)$, though we consider first $m$ qubits as target and last $n$ qubits as control register in this case.



          Now, if $j=11$ then $C_2^j(X)$ is exactly CCNOT gate on 3 qubits. Because we apply $X$ (i.e. negating the value) on the last qubit only if two first qubits are in $|11rangle$ state.






          share|improve this answer











          $endgroup$












          • $begingroup$
            $y$ is an m bit string ? hence $|y rangle$ lies in a$2^m$ dimensional hilbert space?
            $endgroup$
            – Upstart
            Apr 12 at 16:32










          • $begingroup$
            yes, that is it.
            $endgroup$
            – Danylo Y
            Apr 12 at 16:46











          • $begingroup$
            why is $langle i|xrangle=0$ if $xneq i$ i see that it is an inner product between them but how is it zero because two binary strings dot product can still be non zero if they are not equal
            $endgroup$
            – Upstart
            Apr 12 at 16:51











          • $begingroup$
            $langle a | b rangle = langle a_1 | b_1 rangle langle a_2 | b_2 rangle ... langle a_n | b_n rangle$. This is zero if $a_i neq b_i$ at least for some $i$.
            $endgroup$
            – Danylo Y
            Apr 12 at 16:56










          • $begingroup$
            i read that is $= a_1b_1+ a_2b_2+....+a_nb_n$
            $endgroup$
            – Upstart
            Apr 12 at 17:02











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "694"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquantumcomputing.stackexchange.com%2fquestions%2f5899%2fquantum-toffoli-gate-equation%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          Here $i$ and $j$ are bit strings of size $n$. Correspondingly, $|irangle$, $|jrangle$ are some basis vectors in $2^n$-dimensional space, that corresponds to $n$-qubit register.



          Those controlled operations $C$ and $V$ act on $(n+m)$-qubit space. You can consider first $n$ qubits as control register and last $m$ qubits as target register. Now, $C_n^j(U_2^m)$ applies unitary operation $U_2^m$ on the target register if control register is in the state $|jrangle$ and applies $I_2^m$ (i.e. do nothing) otherwise. You can see this by applying $C_n^j(U_2^m)$ on some vector $|xrangle|yrangle$ from the $(n+m)$-qubit space, where $x$ is some $n$-bit string:



          $$
          C_n^j(U_2^m) |xrangle|yrangle = (|jrangle langle j|xrangle) otimes U_2^m |yrangle+ sum_i=0,i neq j^2^n-1((|irangle langle i| x rangle) otimes |yrangle)
          $$



          Here $|irangle langle i|xrangle = 0$ if $xneq i$ and it equals $|irangle$ if $x=i$.
          Hence
          $$C_n^j(U_2^m) |xrangle|yrangle = |jrangle otimes U_2^m |yrangle + 0 = |xrangle otimes U_2^m |yrangle ~~textif~~ x=j$$
          and
          $$C_n^j(U_2^m) |xrangle|yrangle = 0 + |xrangle|yrangle = |xrangle|yrangle ~~textif~~ xneq j.$$



          Gate $V_n^j(U_2^m)$ is basically the same as $C_n^j(U_2^m)$, though we consider first $m$ qubits as target and last $n$ qubits as control register in this case.



          Now, if $j=11$ then $C_2^j(X)$ is exactly CCNOT gate on 3 qubits. Because we apply $X$ (i.e. negating the value) on the last qubit only if two first qubits are in $|11rangle$ state.






          share|improve this answer











          $endgroup$












          • $begingroup$
            $y$ is an m bit string ? hence $|y rangle$ lies in a$2^m$ dimensional hilbert space?
            $endgroup$
            – Upstart
            Apr 12 at 16:32










          • $begingroup$
            yes, that is it.
            $endgroup$
            – Danylo Y
            Apr 12 at 16:46











          • $begingroup$
            why is $langle i|xrangle=0$ if $xneq i$ i see that it is an inner product between them but how is it zero because two binary strings dot product can still be non zero if they are not equal
            $endgroup$
            – Upstart
            Apr 12 at 16:51











          • $begingroup$
            $langle a | b rangle = langle a_1 | b_1 rangle langle a_2 | b_2 rangle ... langle a_n | b_n rangle$. This is zero if $a_i neq b_i$ at least for some $i$.
            $endgroup$
            – Danylo Y
            Apr 12 at 16:56










          • $begingroup$
            i read that is $= a_1b_1+ a_2b_2+....+a_nb_n$
            $endgroup$
            – Upstart
            Apr 12 at 17:02















          4












          $begingroup$

          Here $i$ and $j$ are bit strings of size $n$. Correspondingly, $|irangle$, $|jrangle$ are some basis vectors in $2^n$-dimensional space, that corresponds to $n$-qubit register.



          Those controlled operations $C$ and $V$ act on $(n+m)$-qubit space. You can consider first $n$ qubits as control register and last $m$ qubits as target register. Now, $C_n^j(U_2^m)$ applies unitary operation $U_2^m$ on the target register if control register is in the state $|jrangle$ and applies $I_2^m$ (i.e. do nothing) otherwise. You can see this by applying $C_n^j(U_2^m)$ on some vector $|xrangle|yrangle$ from the $(n+m)$-qubit space, where $x$ is some $n$-bit string:



          $$
          C_n^j(U_2^m) |xrangle|yrangle = (|jrangle langle j|xrangle) otimes U_2^m |yrangle+ sum_i=0,i neq j^2^n-1((|irangle langle i| x rangle) otimes |yrangle)
          $$



          Here $|irangle langle i|xrangle = 0$ if $xneq i$ and it equals $|irangle$ if $x=i$.
          Hence
          $$C_n^j(U_2^m) |xrangle|yrangle = |jrangle otimes U_2^m |yrangle + 0 = |xrangle otimes U_2^m |yrangle ~~textif~~ x=j$$
          and
          $$C_n^j(U_2^m) |xrangle|yrangle = 0 + |xrangle|yrangle = |xrangle|yrangle ~~textif~~ xneq j.$$



          Gate $V_n^j(U_2^m)$ is basically the same as $C_n^j(U_2^m)$, though we consider first $m$ qubits as target and last $n$ qubits as control register in this case.



          Now, if $j=11$ then $C_2^j(X)$ is exactly CCNOT gate on 3 qubits. Because we apply $X$ (i.e. negating the value) on the last qubit only if two first qubits are in $|11rangle$ state.






          share|improve this answer











          $endgroup$












          • $begingroup$
            $y$ is an m bit string ? hence $|y rangle$ lies in a$2^m$ dimensional hilbert space?
            $endgroup$
            – Upstart
            Apr 12 at 16:32










          • $begingroup$
            yes, that is it.
            $endgroup$
            – Danylo Y
            Apr 12 at 16:46











          • $begingroup$
            why is $langle i|xrangle=0$ if $xneq i$ i see that it is an inner product between them but how is it zero because two binary strings dot product can still be non zero if they are not equal
            $endgroup$
            – Upstart
            Apr 12 at 16:51











          • $begingroup$
            $langle a | b rangle = langle a_1 | b_1 rangle langle a_2 | b_2 rangle ... langle a_n | b_n rangle$. This is zero if $a_i neq b_i$ at least for some $i$.
            $endgroup$
            – Danylo Y
            Apr 12 at 16:56










          • $begingroup$
            i read that is $= a_1b_1+ a_2b_2+....+a_nb_n$
            $endgroup$
            – Upstart
            Apr 12 at 17:02













          4












          4








          4





          $begingroup$

          Here $i$ and $j$ are bit strings of size $n$. Correspondingly, $|irangle$, $|jrangle$ are some basis vectors in $2^n$-dimensional space, that corresponds to $n$-qubit register.



          Those controlled operations $C$ and $V$ act on $(n+m)$-qubit space. You can consider first $n$ qubits as control register and last $m$ qubits as target register. Now, $C_n^j(U_2^m)$ applies unitary operation $U_2^m$ on the target register if control register is in the state $|jrangle$ and applies $I_2^m$ (i.e. do nothing) otherwise. You can see this by applying $C_n^j(U_2^m)$ on some vector $|xrangle|yrangle$ from the $(n+m)$-qubit space, where $x$ is some $n$-bit string:



          $$
          C_n^j(U_2^m) |xrangle|yrangle = (|jrangle langle j|xrangle) otimes U_2^m |yrangle+ sum_i=0,i neq j^2^n-1((|irangle langle i| x rangle) otimes |yrangle)
          $$



          Here $|irangle langle i|xrangle = 0$ if $xneq i$ and it equals $|irangle$ if $x=i$.
          Hence
          $$C_n^j(U_2^m) |xrangle|yrangle = |jrangle otimes U_2^m |yrangle + 0 = |xrangle otimes U_2^m |yrangle ~~textif~~ x=j$$
          and
          $$C_n^j(U_2^m) |xrangle|yrangle = 0 + |xrangle|yrangle = |xrangle|yrangle ~~textif~~ xneq j.$$



          Gate $V_n^j(U_2^m)$ is basically the same as $C_n^j(U_2^m)$, though we consider first $m$ qubits as target and last $n$ qubits as control register in this case.



          Now, if $j=11$ then $C_2^j(X)$ is exactly CCNOT gate on 3 qubits. Because we apply $X$ (i.e. negating the value) on the last qubit only if two first qubits are in $|11rangle$ state.






          share|improve this answer











          $endgroup$



          Here $i$ and $j$ are bit strings of size $n$. Correspondingly, $|irangle$, $|jrangle$ are some basis vectors in $2^n$-dimensional space, that corresponds to $n$-qubit register.



          Those controlled operations $C$ and $V$ act on $(n+m)$-qubit space. You can consider first $n$ qubits as control register and last $m$ qubits as target register. Now, $C_n^j(U_2^m)$ applies unitary operation $U_2^m$ on the target register if control register is in the state $|jrangle$ and applies $I_2^m$ (i.e. do nothing) otherwise. You can see this by applying $C_n^j(U_2^m)$ on some vector $|xrangle|yrangle$ from the $(n+m)$-qubit space, where $x$ is some $n$-bit string:



          $$
          C_n^j(U_2^m) |xrangle|yrangle = (|jrangle langle j|xrangle) otimes U_2^m |yrangle+ sum_i=0,i neq j^2^n-1((|irangle langle i| x rangle) otimes |yrangle)
          $$



          Here $|irangle langle i|xrangle = 0$ if $xneq i$ and it equals $|irangle$ if $x=i$.
          Hence
          $$C_n^j(U_2^m) |xrangle|yrangle = |jrangle otimes U_2^m |yrangle + 0 = |xrangle otimes U_2^m |yrangle ~~textif~~ x=j$$
          and
          $$C_n^j(U_2^m) |xrangle|yrangle = 0 + |xrangle|yrangle = |xrangle|yrangle ~~textif~~ xneq j.$$



          Gate $V_n^j(U_2^m)$ is basically the same as $C_n^j(U_2^m)$, though we consider first $m$ qubits as target and last $n$ qubits as control register in this case.



          Now, if $j=11$ then $C_2^j(X)$ is exactly CCNOT gate on 3 qubits. Because we apply $X$ (i.e. negating the value) on the last qubit only if two first qubits are in $|11rangle$ state.







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Apr 12 at 15:08

























          answered Apr 12 at 14:53









          Danylo YDanylo Y

          55116




          55116











          • $begingroup$
            $y$ is an m bit string ? hence $|y rangle$ lies in a$2^m$ dimensional hilbert space?
            $endgroup$
            – Upstart
            Apr 12 at 16:32










          • $begingroup$
            yes, that is it.
            $endgroup$
            – Danylo Y
            Apr 12 at 16:46











          • $begingroup$
            why is $langle i|xrangle=0$ if $xneq i$ i see that it is an inner product between them but how is it zero because two binary strings dot product can still be non zero if they are not equal
            $endgroup$
            – Upstart
            Apr 12 at 16:51











          • $begingroup$
            $langle a | b rangle = langle a_1 | b_1 rangle langle a_2 | b_2 rangle ... langle a_n | b_n rangle$. This is zero if $a_i neq b_i$ at least for some $i$.
            $endgroup$
            – Danylo Y
            Apr 12 at 16:56










          • $begingroup$
            i read that is $= a_1b_1+ a_2b_2+....+a_nb_n$
            $endgroup$
            – Upstart
            Apr 12 at 17:02
















          • $begingroup$
            $y$ is an m bit string ? hence $|y rangle$ lies in a$2^m$ dimensional hilbert space?
            $endgroup$
            – Upstart
            Apr 12 at 16:32










          • $begingroup$
            yes, that is it.
            $endgroup$
            – Danylo Y
            Apr 12 at 16:46











          • $begingroup$
            why is $langle i|xrangle=0$ if $xneq i$ i see that it is an inner product between them but how is it zero because two binary strings dot product can still be non zero if they are not equal
            $endgroup$
            – Upstart
            Apr 12 at 16:51











          • $begingroup$
            $langle a | b rangle = langle a_1 | b_1 rangle langle a_2 | b_2 rangle ... langle a_n | b_n rangle$. This is zero if $a_i neq b_i$ at least for some $i$.
            $endgroup$
            – Danylo Y
            Apr 12 at 16:56










          • $begingroup$
            i read that is $= a_1b_1+ a_2b_2+....+a_nb_n$
            $endgroup$
            – Upstart
            Apr 12 at 17:02















          $begingroup$
          $y$ is an m bit string ? hence $|y rangle$ lies in a$2^m$ dimensional hilbert space?
          $endgroup$
          – Upstart
          Apr 12 at 16:32




          $begingroup$
          $y$ is an m bit string ? hence $|y rangle$ lies in a$2^m$ dimensional hilbert space?
          $endgroup$
          – Upstart
          Apr 12 at 16:32












          $begingroup$
          yes, that is it.
          $endgroup$
          – Danylo Y
          Apr 12 at 16:46





          $begingroup$
          yes, that is it.
          $endgroup$
          – Danylo Y
          Apr 12 at 16:46













          $begingroup$
          why is $langle i|xrangle=0$ if $xneq i$ i see that it is an inner product between them but how is it zero because two binary strings dot product can still be non zero if they are not equal
          $endgroup$
          – Upstart
          Apr 12 at 16:51





          $begingroup$
          why is $langle i|xrangle=0$ if $xneq i$ i see that it is an inner product between them but how is it zero because two binary strings dot product can still be non zero if they are not equal
          $endgroup$
          – Upstart
          Apr 12 at 16:51













          $begingroup$
          $langle a | b rangle = langle a_1 | b_1 rangle langle a_2 | b_2 rangle ... langle a_n | b_n rangle$. This is zero if $a_i neq b_i$ at least for some $i$.
          $endgroup$
          – Danylo Y
          Apr 12 at 16:56




          $begingroup$
          $langle a | b rangle = langle a_1 | b_1 rangle langle a_2 | b_2 rangle ... langle a_n | b_n rangle$. This is zero if $a_i neq b_i$ at least for some $i$.
          $endgroup$
          – Danylo Y
          Apr 12 at 16:56












          $begingroup$
          i read that is $= a_1b_1+ a_2b_2+....+a_nb_n$
          $endgroup$
          – Upstart
          Apr 12 at 17:02




          $begingroup$
          i read that is $= a_1b_1+ a_2b_2+....+a_nb_n$
          $endgroup$
          – Upstart
          Apr 12 at 17:02

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Quantum Computing Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquantumcomputing.stackexchange.com%2fquestions%2f5899%2fquantum-toffoli-gate-equation%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          getting Checkpoint VPN SSL Network Extender working in the command lineHow to connect to CheckPoint VPN on Ubuntu 18.04LTS?Will the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayVPN SSL Network Extender in FirefoxLinux Checkpoint SNX tool configuration issuesCheck Point - Connect under Linux - snx + OTPSNX VPN Ububuntu 18.XXUsing Checkpoint VPN SSL Network Extender CLI with certificateVPN with network manager (nm-applet) is not workingWill the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayImport VPN config files to NetworkManager from command lineTrouble connecting to VPN using network-manager, while command line worksStart a VPN connection with PPTP protocol on command linestarting a docker service daemon breaks the vpn networkCan't connect to vpn with Network-managerVPN SSL Network Extender in FirefoxUsing Checkpoint VPN SSL Network Extender CLI with certificate

          Cannot Extend partition with GParted The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Community Moderator Election ResultsCan't increase partition size with GParted?GParted doesn't recognize the unallocated space after my current partitionWhat is the best way to add unallocated space located before to Ubuntu 12.04 partition with GParted live?I can't figure out how to extend my Arch home partition into free spaceGparted Linux Mint 18.1 issueTrying to extend but swap partition is showing as Unknown in Gparted, shows proper from fdiskRearrange partitions in gparted to extend a partitionUnable to extend partition even though unallocated space is next to it using GPartedAllocate free space to root partitiongparted: how to merge unallocated space with a partition

          Marilyn Monroe Ny fiainany manokana | Jereo koa | Meny fitetezanafanitarana azy.