General topology proving something for all of its pointsIf a set contains all its limit points must it be closed?Topology and limit pointsTwo trivial questions in general topologypoint set topology: closed points denseLimit points TopologyFinite point set has limit points for general topological spaces?General topologyGeneral topology: looking for a brief and clear proof that the two main definitions of “closure” are the same.A subset of a topological space is closed iff it contains all its limit points - true or false?Questions on general topology

Can somebody explain Brexit in a few child-proof sentences?

How do I define a right arrow with bar in LaTeX?

Is this Spell Mimic feat balanced?

How was Earth single-handedly capable of creating 3 of the 4 gods of chaos?

How does residential electricity work?

Lay out the Carpet

How do I keep an essay about "feeling flat" from feeling flat?

Implement the Thanos sorting algorithm

Opposite of a diet

Will it be accepted, if there is no ''Main Character" stereotype?

Can a monster with multiattack use this ability if they are missing a limb?

Efficiently merge handle parallel feature branches in SFDX

What is the oldest known work of fiction?

Is there any easy technique written in Bhagavad GITA to control lust?

apt-get update is failing in debian

The baby cries all morning

Can I Retrieve Email Addresses from BCC?

Was the picture area of a CRT a parallelogram (instead of a true rectangle)?

Failed to fetch jessie backports repository

What defines a dissertation?

Curses work by shouting - How to avoid collateral damage?

Why is `const int& k = i; ++i; ` possible?

Confused about a passage in Harry Potter y la piedra filosofal

Why did Kant, Hegel, and Adorno leave some words and phrases in the Greek alphabet?



General topology proving something for all of its points


If a set contains all its limit points must it be closed?Topology and limit pointsTwo trivial questions in general topologypoint set topology: closed points denseLimit points TopologyFinite point set has limit points for general topological spaces?General topologyGeneral topology: looking for a brief and clear proof that the two main definitions of “closure” are the same.A subset of a topological space is closed iff it contains all its limit points - true or false?Questions on general topology













2












$begingroup$


My question is: if you prove that something is true for all points in a topological space or a subset of some topological space, does that imply that this property holds for the whole topological space or the subset of the topological space?



EDIT: more concrete if you have a topological space where all of its points are closed then is this space also closed? If that even makes sense.



If this is true am I then allowed to pick an arbitrary point of the space and then show that since it holds for this one point then the topological space has this property?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    What kind of property are we talking about?
    $endgroup$
    – st.math
    yesterday






  • 1




    $begingroup$
    $X$ is closed in $X$ by definition...
    $endgroup$
    – YuiTo Cheng
    yesterday







  • 1




    $begingroup$
    Well, any space is closed in itself. That's part of the definition of a topology, and doesn't really have anything to do with whether single points are closed.
    $endgroup$
    – Arthur
    yesterday






  • 1




    $begingroup$
    Your question is too broad to make much sense. Every point $x$ in a topological space $X$ has the property that $xneq X$ as sets can't contain themselves, but $X$ does not have this property. I can't actually think of a property that applies to points that can also apply to spaces in any meaningful way.
    $endgroup$
    – Robert Thingum
    yesterday







  • 2




    $begingroup$
    It's because finite union of closed sets is closed
    $endgroup$
    – YuiTo Cheng
    yesterday
















2












$begingroup$


My question is: if you prove that something is true for all points in a topological space or a subset of some topological space, does that imply that this property holds for the whole topological space or the subset of the topological space?



EDIT: more concrete if you have a topological space where all of its points are closed then is this space also closed? If that even makes sense.



If this is true am I then allowed to pick an arbitrary point of the space and then show that since it holds for this one point then the topological space has this property?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    What kind of property are we talking about?
    $endgroup$
    – st.math
    yesterday






  • 1




    $begingroup$
    $X$ is closed in $X$ by definition...
    $endgroup$
    – YuiTo Cheng
    yesterday







  • 1




    $begingroup$
    Well, any space is closed in itself. That's part of the definition of a topology, and doesn't really have anything to do with whether single points are closed.
    $endgroup$
    – Arthur
    yesterday






  • 1




    $begingroup$
    Your question is too broad to make much sense. Every point $x$ in a topological space $X$ has the property that $xneq X$ as sets can't contain themselves, but $X$ does not have this property. I can't actually think of a property that applies to points that can also apply to spaces in any meaningful way.
    $endgroup$
    – Robert Thingum
    yesterday







  • 2




    $begingroup$
    It's because finite union of closed sets is closed
    $endgroup$
    – YuiTo Cheng
    yesterday














2












2








2





$begingroup$


My question is: if you prove that something is true for all points in a topological space or a subset of some topological space, does that imply that this property holds for the whole topological space or the subset of the topological space?



EDIT: more concrete if you have a topological space where all of its points are closed then is this space also closed? If that even makes sense.



If this is true am I then allowed to pick an arbitrary point of the space and then show that since it holds for this one point then the topological space has this property?










share|cite|improve this question











$endgroup$




My question is: if you prove that something is true for all points in a topological space or a subset of some topological space, does that imply that this property holds for the whole topological space or the subset of the topological space?



EDIT: more concrete if you have a topological space where all of its points are closed then is this space also closed? If that even makes sense.



If this is true am I then allowed to pick an arbitrary point of the space and then show that since it holds for this one point then the topological space has this property?







general-topology






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday







Jensens

















asked yesterday









JensensJensens

366




366







  • 1




    $begingroup$
    What kind of property are we talking about?
    $endgroup$
    – st.math
    yesterday






  • 1




    $begingroup$
    $X$ is closed in $X$ by definition...
    $endgroup$
    – YuiTo Cheng
    yesterday







  • 1




    $begingroup$
    Well, any space is closed in itself. That's part of the definition of a topology, and doesn't really have anything to do with whether single points are closed.
    $endgroup$
    – Arthur
    yesterday






  • 1




    $begingroup$
    Your question is too broad to make much sense. Every point $x$ in a topological space $X$ has the property that $xneq X$ as sets can't contain themselves, but $X$ does not have this property. I can't actually think of a property that applies to points that can also apply to spaces in any meaningful way.
    $endgroup$
    – Robert Thingum
    yesterday







  • 2




    $begingroup$
    It's because finite union of closed sets is closed
    $endgroup$
    – YuiTo Cheng
    yesterday













  • 1




    $begingroup$
    What kind of property are we talking about?
    $endgroup$
    – st.math
    yesterday






  • 1




    $begingroup$
    $X$ is closed in $X$ by definition...
    $endgroup$
    – YuiTo Cheng
    yesterday







  • 1




    $begingroup$
    Well, any space is closed in itself. That's part of the definition of a topology, and doesn't really have anything to do with whether single points are closed.
    $endgroup$
    – Arthur
    yesterday






  • 1




    $begingroup$
    Your question is too broad to make much sense. Every point $x$ in a topological space $X$ has the property that $xneq X$ as sets can't contain themselves, but $X$ does not have this property. I can't actually think of a property that applies to points that can also apply to spaces in any meaningful way.
    $endgroup$
    – Robert Thingum
    yesterday







  • 2




    $begingroup$
    It's because finite union of closed sets is closed
    $endgroup$
    – YuiTo Cheng
    yesterday








1




1




$begingroup$
What kind of property are we talking about?
$endgroup$
– st.math
yesterday




$begingroup$
What kind of property are we talking about?
$endgroup$
– st.math
yesterday




1




1




$begingroup$
$X$ is closed in $X$ by definition...
$endgroup$
– YuiTo Cheng
yesterday





$begingroup$
$X$ is closed in $X$ by definition...
$endgroup$
– YuiTo Cheng
yesterday





1




1




$begingroup$
Well, any space is closed in itself. That's part of the definition of a topology, and doesn't really have anything to do with whether single points are closed.
$endgroup$
– Arthur
yesterday




$begingroup$
Well, any space is closed in itself. That's part of the definition of a topology, and doesn't really have anything to do with whether single points are closed.
$endgroup$
– Arthur
yesterday




1




1




$begingroup$
Your question is too broad to make much sense. Every point $x$ in a topological space $X$ has the property that $xneq X$ as sets can't contain themselves, but $X$ does not have this property. I can't actually think of a property that applies to points that can also apply to spaces in any meaningful way.
$endgroup$
– Robert Thingum
yesterday





$begingroup$
Your question is too broad to make much sense. Every point $x$ in a topological space $X$ has the property that $xneq X$ as sets can't contain themselves, but $X$ does not have this property. I can't actually think of a property that applies to points that can also apply to spaces in any meaningful way.
$endgroup$
– Robert Thingum
yesterday





2




2




$begingroup$
It's because finite union of closed sets is closed
$endgroup$
– YuiTo Cheng
yesterday





$begingroup$
It's because finite union of closed sets is closed
$endgroup$
– YuiTo Cheng
yesterday











3 Answers
3






active

oldest

votes


















4












$begingroup$

The answer, as far as your specific example is concerned, is negative. Every topological space $X$ is a closed subset of itself. However, there are topological spaces in which not all points are closed.



A better example would be: a set which consists of a single point is always compact and connected, but lots of topological spaces are neither compact nor connected.






share|cite|improve this answer









$endgroup$




















    3












    $begingroup$

    As your example property "is closed" illustrates, the properties of single points in a space and the space as a whole are not entirely linked together. At the very least, it's not something you can count on in general. I would personally suggest you instead as a general rule assume they are not connected, and make note of the times it does happen.






    share|cite|improve this answer









    $endgroup$




















      3












      $begingroup$

      Taken literally, your question is ill-posed.



      This is because a topological space and a point in the topological space are different kinds of things. When we say that a point is closed in a topological space, what we really mean is that its singleton is closed. This is literally very different, but because "a point is closed" taken literally is, in general, nonsensical, this short of shorthand is acceptable.



      Having this in mind, you could rephrase your question to a more meaningful (not nonsensical) one:




      Let $X$ be a topological space, and let $Asubseteq X$. If $P$ is a topological property of a subset of $X$ and for every $ain A$, the singleton $a$ has the property $P$, does $A$ also have the property $P$?




      The answer is trivially no. If you consider "not being a singleton" a topological property, then it fails spectacularly. Otherwise, the property you consider, "being closed" (definitely a topological property) also fails: for example, if you consider $(0,1)subseteq mathbf R$, then (the singleton of) every point in $(0,1)$ is closed in the reals, but $(0,1)$ is not.



      You might ask for what properties $P$ this is true. One such property is being open: if for every $ain A$, the singleton $a$ is open in $X$, then $A$ itself is open (as a union of open sets). I strongly suspect that this is just about the only interesting and nontrivial property for which this is true (for suitable notions of "interesting" and "nontrivial").



      A related, far more interesting question is about what topological properties are local, or in other words, what properties of a topological space are true for a space if and only if every point has a neighbourhood with the same property.






      share|cite|improve this answer









      $endgroup$












      • $begingroup$
        Very good answer appreciate it, yes it was difficult for me to ask the question properly I think know it makes a lot more sense
        $endgroup$
        – Jensens
        yesterday










      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3161827%2fgeneral-topology-proving-something-for-all-of-its-points%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$

      The answer, as far as your specific example is concerned, is negative. Every topological space $X$ is a closed subset of itself. However, there are topological spaces in which not all points are closed.



      A better example would be: a set which consists of a single point is always compact and connected, but lots of topological spaces are neither compact nor connected.






      share|cite|improve this answer









      $endgroup$

















        4












        $begingroup$

        The answer, as far as your specific example is concerned, is negative. Every topological space $X$ is a closed subset of itself. However, there are topological spaces in which not all points are closed.



        A better example would be: a set which consists of a single point is always compact and connected, but lots of topological spaces are neither compact nor connected.






        share|cite|improve this answer









        $endgroup$















          4












          4








          4





          $begingroup$

          The answer, as far as your specific example is concerned, is negative. Every topological space $X$ is a closed subset of itself. However, there are topological spaces in which not all points are closed.



          A better example would be: a set which consists of a single point is always compact and connected, but lots of topological spaces are neither compact nor connected.






          share|cite|improve this answer









          $endgroup$



          The answer, as far as your specific example is concerned, is negative. Every topological space $X$ is a closed subset of itself. However, there are topological spaces in which not all points are closed.



          A better example would be: a set which consists of a single point is always compact and connected, but lots of topological spaces are neither compact nor connected.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered yesterday









          José Carlos SantosJosé Carlos Santos

          170k23132238




          170k23132238





















              3












              $begingroup$

              As your example property "is closed" illustrates, the properties of single points in a space and the space as a whole are not entirely linked together. At the very least, it's not something you can count on in general. I would personally suggest you instead as a general rule assume they are not connected, and make note of the times it does happen.






              share|cite|improve this answer









              $endgroup$

















                3












                $begingroup$

                As your example property "is closed" illustrates, the properties of single points in a space and the space as a whole are not entirely linked together. At the very least, it's not something you can count on in general. I would personally suggest you instead as a general rule assume they are not connected, and make note of the times it does happen.






                share|cite|improve this answer









                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  As your example property "is closed" illustrates, the properties of single points in a space and the space as a whole are not entirely linked together. At the very least, it's not something you can count on in general. I would personally suggest you instead as a general rule assume they are not connected, and make note of the times it does happen.






                  share|cite|improve this answer









                  $endgroup$



                  As your example property "is closed" illustrates, the properties of single points in a space and the space as a whole are not entirely linked together. At the very least, it's not something you can count on in general. I would personally suggest you instead as a general rule assume they are not connected, and make note of the times it does happen.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered yesterday









                  ArthurArthur

                  120k7120203




                  120k7120203





















                      3












                      $begingroup$

                      Taken literally, your question is ill-posed.



                      This is because a topological space and a point in the topological space are different kinds of things. When we say that a point is closed in a topological space, what we really mean is that its singleton is closed. This is literally very different, but because "a point is closed" taken literally is, in general, nonsensical, this short of shorthand is acceptable.



                      Having this in mind, you could rephrase your question to a more meaningful (not nonsensical) one:




                      Let $X$ be a topological space, and let $Asubseteq X$. If $P$ is a topological property of a subset of $X$ and for every $ain A$, the singleton $a$ has the property $P$, does $A$ also have the property $P$?




                      The answer is trivially no. If you consider "not being a singleton" a topological property, then it fails spectacularly. Otherwise, the property you consider, "being closed" (definitely a topological property) also fails: for example, if you consider $(0,1)subseteq mathbf R$, then (the singleton of) every point in $(0,1)$ is closed in the reals, but $(0,1)$ is not.



                      You might ask for what properties $P$ this is true. One such property is being open: if for every $ain A$, the singleton $a$ is open in $X$, then $A$ itself is open (as a union of open sets). I strongly suspect that this is just about the only interesting and nontrivial property for which this is true (for suitable notions of "interesting" and "nontrivial").



                      A related, far more interesting question is about what topological properties are local, or in other words, what properties of a topological space are true for a space if and only if every point has a neighbourhood with the same property.






                      share|cite|improve this answer









                      $endgroup$












                      • $begingroup$
                        Very good answer appreciate it, yes it was difficult for me to ask the question properly I think know it makes a lot more sense
                        $endgroup$
                        – Jensens
                        yesterday















                      3












                      $begingroup$

                      Taken literally, your question is ill-posed.



                      This is because a topological space and a point in the topological space are different kinds of things. When we say that a point is closed in a topological space, what we really mean is that its singleton is closed. This is literally very different, but because "a point is closed" taken literally is, in general, nonsensical, this short of shorthand is acceptable.



                      Having this in mind, you could rephrase your question to a more meaningful (not nonsensical) one:




                      Let $X$ be a topological space, and let $Asubseteq X$. If $P$ is a topological property of a subset of $X$ and for every $ain A$, the singleton $a$ has the property $P$, does $A$ also have the property $P$?




                      The answer is trivially no. If you consider "not being a singleton" a topological property, then it fails spectacularly. Otherwise, the property you consider, "being closed" (definitely a topological property) also fails: for example, if you consider $(0,1)subseteq mathbf R$, then (the singleton of) every point in $(0,1)$ is closed in the reals, but $(0,1)$ is not.



                      You might ask for what properties $P$ this is true. One such property is being open: if for every $ain A$, the singleton $a$ is open in $X$, then $A$ itself is open (as a union of open sets). I strongly suspect that this is just about the only interesting and nontrivial property for which this is true (for suitable notions of "interesting" and "nontrivial").



                      A related, far more interesting question is about what topological properties are local, or in other words, what properties of a topological space are true for a space if and only if every point has a neighbourhood with the same property.






                      share|cite|improve this answer









                      $endgroup$












                      • $begingroup$
                        Very good answer appreciate it, yes it was difficult for me to ask the question properly I think know it makes a lot more sense
                        $endgroup$
                        – Jensens
                        yesterday













                      3












                      3








                      3





                      $begingroup$

                      Taken literally, your question is ill-posed.



                      This is because a topological space and a point in the topological space are different kinds of things. When we say that a point is closed in a topological space, what we really mean is that its singleton is closed. This is literally very different, but because "a point is closed" taken literally is, in general, nonsensical, this short of shorthand is acceptable.



                      Having this in mind, you could rephrase your question to a more meaningful (not nonsensical) one:




                      Let $X$ be a topological space, and let $Asubseteq X$. If $P$ is a topological property of a subset of $X$ and for every $ain A$, the singleton $a$ has the property $P$, does $A$ also have the property $P$?




                      The answer is trivially no. If you consider "not being a singleton" a topological property, then it fails spectacularly. Otherwise, the property you consider, "being closed" (definitely a topological property) also fails: for example, if you consider $(0,1)subseteq mathbf R$, then (the singleton of) every point in $(0,1)$ is closed in the reals, but $(0,1)$ is not.



                      You might ask for what properties $P$ this is true. One such property is being open: if for every $ain A$, the singleton $a$ is open in $X$, then $A$ itself is open (as a union of open sets). I strongly suspect that this is just about the only interesting and nontrivial property for which this is true (for suitable notions of "interesting" and "nontrivial").



                      A related, far more interesting question is about what topological properties are local, or in other words, what properties of a topological space are true for a space if and only if every point has a neighbourhood with the same property.






                      share|cite|improve this answer









                      $endgroup$



                      Taken literally, your question is ill-posed.



                      This is because a topological space and a point in the topological space are different kinds of things. When we say that a point is closed in a topological space, what we really mean is that its singleton is closed. This is literally very different, but because "a point is closed" taken literally is, in general, nonsensical, this short of shorthand is acceptable.



                      Having this in mind, you could rephrase your question to a more meaningful (not nonsensical) one:




                      Let $X$ be a topological space, and let $Asubseteq X$. If $P$ is a topological property of a subset of $X$ and for every $ain A$, the singleton $a$ has the property $P$, does $A$ also have the property $P$?




                      The answer is trivially no. If you consider "not being a singleton" a topological property, then it fails spectacularly. Otherwise, the property you consider, "being closed" (definitely a topological property) also fails: for example, if you consider $(0,1)subseteq mathbf R$, then (the singleton of) every point in $(0,1)$ is closed in the reals, but $(0,1)$ is not.



                      You might ask for what properties $P$ this is true. One such property is being open: if for every $ain A$, the singleton $a$ is open in $X$, then $A$ itself is open (as a union of open sets). I strongly suspect that this is just about the only interesting and nontrivial property for which this is true (for suitable notions of "interesting" and "nontrivial").



                      A related, far more interesting question is about what topological properties are local, or in other words, what properties of a topological space are true for a space if and only if every point has a neighbourhood with the same property.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered yesterday









                      tomasztomasz

                      24k23482




                      24k23482











                      • $begingroup$
                        Very good answer appreciate it, yes it was difficult for me to ask the question properly I think know it makes a lot more sense
                        $endgroup$
                        – Jensens
                        yesterday
















                      • $begingroup$
                        Very good answer appreciate it, yes it was difficult for me to ask the question properly I think know it makes a lot more sense
                        $endgroup$
                        – Jensens
                        yesterday















                      $begingroup$
                      Very good answer appreciate it, yes it was difficult for me to ask the question properly I think know it makes a lot more sense
                      $endgroup$
                      – Jensens
                      yesterday




                      $begingroup$
                      Very good answer appreciate it, yes it was difficult for me to ask the question properly I think know it makes a lot more sense
                      $endgroup$
                      – Jensens
                      yesterday

















                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3161827%2fgeneral-topology-proving-something-for-all-of-its-points%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      getting Checkpoint VPN SSL Network Extender working in the command lineHow to connect to CheckPoint VPN on Ubuntu 18.04LTS?Will the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayVPN SSL Network Extender in FirefoxLinux Checkpoint SNX tool configuration issuesCheck Point - Connect under Linux - snx + OTPSNX VPN Ububuntu 18.XXUsing Checkpoint VPN SSL Network Extender CLI with certificateVPN with network manager (nm-applet) is not workingWill the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayImport VPN config files to NetworkManager from command lineTrouble connecting to VPN using network-manager, while command line worksStart a VPN connection with PPTP protocol on command linestarting a docker service daemon breaks the vpn networkCan't connect to vpn with Network-managerVPN SSL Network Extender in FirefoxUsing Checkpoint VPN SSL Network Extender CLI with certificate

                      Cannot Extend partition with GParted The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Community Moderator Election ResultsCan't increase partition size with GParted?GParted doesn't recognize the unallocated space after my current partitionWhat is the best way to add unallocated space located before to Ubuntu 12.04 partition with GParted live?I can't figure out how to extend my Arch home partition into free spaceGparted Linux Mint 18.1 issueTrying to extend but swap partition is showing as Unknown in Gparted, shows proper from fdiskRearrange partitions in gparted to extend a partitionUnable to extend partition even though unallocated space is next to it using GPartedAllocate free space to root partitiongparted: how to merge unallocated space with a partition

                      Marilyn Monroe Ny fiainany manokana | Jereo koa | Meny fitetezanafanitarana azy.