When is separating the total wavefunction into a space part and a spin part possible?Anti-symmetric 2 particle wave functionA conceptual question about spinAntisymmetry requirement for the total wavefunctionConnection between singlet, triplet two-electron states and the Slater determinantMeasuring total angular momentum of two electronsTwo identical particlesConfusion on good quantum numbersSpectrum of two particles system hamiltonianAbout the symmetric spatial part of a two-electron wavefunction: Can it be that $r_1= r_2$ less favoured than $|r_1-r_2|neq 0$?What is the simplest possible Hamiltonian that yields an Antisymmetric Wavefunction?

Coordinate position not precise

Why are on-board computers allowed to change controls without notifying the pilots?

How can I get through very long and very dry, but also very useful technical documents when learning a new tool?

How was Earth single-handedly capable of creating 3 of the 4 gods of chaos?

What to do with wrong results in talks?

What would be the benefits of having both a state and local currencies?

There is only s̶i̶x̶t̶y one place he can be

Do there exist finite commutative rings with identity that are not Bézout rings?

Student evaluations of teaching assistants

Is there a problem with hiding "forgot password" until it's needed?

Products and sum of cubes in Fibonacci

Can somebody explain Brexit in a few child-proof sentences?

Implement the Thanos sorting algorithm

How do I keep an essay about "feeling flat" from feeling flat?

Is the destination of a commercial flight important for the pilot?

Using parameter substitution on a Bash array

Where in the Bible does the greeting ("Dominus Vobiscum") used at Mass come from?

What't the meaning of this extra silence?

Personal Teleportation as a Weapon

Ways to speed up user implemented RK4

What are the ramifications of creating a homebrew world without an Astral Plane?

Can I use my Chinese passport to enter China after I acquired another citizenship?

How do I define a right arrow with bar in LaTeX?

Generic lambda vs generic function give different behaviour



When is separating the total wavefunction into a space part and a spin part possible?


Anti-symmetric 2 particle wave functionA conceptual question about spinAntisymmetry requirement for the total wavefunctionConnection between singlet, triplet two-electron states and the Slater determinantMeasuring total angular momentum of two electronsTwo identical particlesConfusion on good quantum numbersSpectrum of two particles system hamiltonianAbout the symmetric spatial part of a two-electron wavefunction: Can it be that $r_1= r_2$ less favoured than $|r_1-r_2|neq 0$?What is the simplest possible Hamiltonian that yields an Antisymmetric Wavefunction?













5












$begingroup$


The total wavefunction of an electron $psi(vecr,s)$ can always be written as $$psi(vecr,s)=phi(vecr)zeta_s,m_s$$ where $phi(vecr)$ is the space part and $zeta_s,m_s$ is the spin part of the total wavefunction $psi(vecr,s)$. In my notation, $s=1/2, m_s=pm 1/2$.



Question 1 Is the above statement true? I am asking about any wavefunction here. Not only about energy eigenfunctions.



Now imagine a system of two electrons. Even without any knowledge about the Hamiltonian of the system, the overall wavefunction $psi(vecr_1,vecr_2;s_1,s_2)$ is antisymmetric. I think (I have this impression) under this general conditions, it is not possible to decompose $psi(vecr_1,vecr_2;s_1,s_2)$ into a product of a space part and spin part. However, if the Hamiltonian is spin-independent, only then can we do such a decomposition into space part and spin part.



Question 2 Can someone properly argue that how this is so? Please mention about any wavefunction of the system and about energy eigenfunctions.










share|cite|improve this question











$endgroup$
















    5












    $begingroup$


    The total wavefunction of an electron $psi(vecr,s)$ can always be written as $$psi(vecr,s)=phi(vecr)zeta_s,m_s$$ where $phi(vecr)$ is the space part and $zeta_s,m_s$ is the spin part of the total wavefunction $psi(vecr,s)$. In my notation, $s=1/2, m_s=pm 1/2$.



    Question 1 Is the above statement true? I am asking about any wavefunction here. Not only about energy eigenfunctions.



    Now imagine a system of two electrons. Even without any knowledge about the Hamiltonian of the system, the overall wavefunction $psi(vecr_1,vecr_2;s_1,s_2)$ is antisymmetric. I think (I have this impression) under this general conditions, it is not possible to decompose $psi(vecr_1,vecr_2;s_1,s_2)$ into a product of a space part and spin part. However, if the Hamiltonian is spin-independent, only then can we do such a decomposition into space part and spin part.



    Question 2 Can someone properly argue that how this is so? Please mention about any wavefunction of the system and about energy eigenfunctions.










    share|cite|improve this question











    $endgroup$














      5












      5








      5





      $begingroup$


      The total wavefunction of an electron $psi(vecr,s)$ can always be written as $$psi(vecr,s)=phi(vecr)zeta_s,m_s$$ where $phi(vecr)$ is the space part and $zeta_s,m_s$ is the spin part of the total wavefunction $psi(vecr,s)$. In my notation, $s=1/2, m_s=pm 1/2$.



      Question 1 Is the above statement true? I am asking about any wavefunction here. Not only about energy eigenfunctions.



      Now imagine a system of two electrons. Even without any knowledge about the Hamiltonian of the system, the overall wavefunction $psi(vecr_1,vecr_2;s_1,s_2)$ is antisymmetric. I think (I have this impression) under this general conditions, it is not possible to decompose $psi(vecr_1,vecr_2;s_1,s_2)$ into a product of a space part and spin part. However, if the Hamiltonian is spin-independent, only then can we do such a decomposition into space part and spin part.



      Question 2 Can someone properly argue that how this is so? Please mention about any wavefunction of the system and about energy eigenfunctions.










      share|cite|improve this question











      $endgroup$




      The total wavefunction of an electron $psi(vecr,s)$ can always be written as $$psi(vecr,s)=phi(vecr)zeta_s,m_s$$ where $phi(vecr)$ is the space part and $zeta_s,m_s$ is the spin part of the total wavefunction $psi(vecr,s)$. In my notation, $s=1/2, m_s=pm 1/2$.



      Question 1 Is the above statement true? I am asking about any wavefunction here. Not only about energy eigenfunctions.



      Now imagine a system of two electrons. Even without any knowledge about the Hamiltonian of the system, the overall wavefunction $psi(vecr_1,vecr_2;s_1,s_2)$ is antisymmetric. I think (I have this impression) under this general conditions, it is not possible to decompose $psi(vecr_1,vecr_2;s_1,s_2)$ into a product of a space part and spin part. However, if the Hamiltonian is spin-independent, only then can we do such a decomposition into space part and spin part.



      Question 2 Can someone properly argue that how this is so? Please mention about any wavefunction of the system and about energy eigenfunctions.







      quantum-mechanics wavefunction quantum-spin pauli-exclusion-principle identical-particles






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited yesterday







      mithusengupta123

















      asked yesterday









      mithusengupta123mithusengupta123

      1,32311539




      1,32311539




















          1 Answer
          1






          active

          oldest

          votes


















          11












          $begingroup$

          Your claim




          [any arbitrary] wavefunction of an electron $psi(vecr,s)$ can always be written as $$psi(vecr,s)=phi(vecr)zeta_s,m_s tag 1$$ where $phi(vecr)$ is the space part and $zeta_s,m_s$ is the spin part of the total wavefunction $psi(vecr,s)$




          is false. It is perfectly possible to produce wavefunctions which cannot be written in that separable form - for a simple example, just take two orthogonal spatial wavefunctions, $phi_1$ and $phi_2$, and two orthogonal spin states, $zeta_1$ and $zeta_2$, and define
          $$
          psi = frac1sqrt2bigg[phi_1zeta_1+phi_2zeta_2 bigg].
          $$



          Moreover, to be clear: the hamiltonian of a system has absolutely no effect on the allowed wavefunctions for that system. The only thing that depends on the hamiltonian is the energy eigenstates.



          The result you want is the following:




          If the hamiltonian is separable into spatial and spin components as $$ H = H_mathrmspaceotimes mathbb I+ mathbb I otimes H_mathrmspin,$$ with $H_mathrmspaceotimes mathbb I$ commuting with all spin operators and $mathbb I otimes H_mathrmspin$ commuting with all space operators, then there exists an eigenbasis for $H$ of the separable form $(1)$.




          To build that eigenbasis, simply diagonalize $H_mathrmspace$ and $H_mathrmspin$ independently, and form tensor products of their eigenstates. (Note also that the quantifiers here are crucial, particularly the "If" in the hypotheses and the "there exists" in the results.)






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            @SRS The claim is specifically that there exists a separable eigenbasis. There is no claim that all eigenbases for such a hamiltonian are separable, because that claim is false. Please read more carefully.
            $endgroup$
            – Emilio Pisanty
            yesterday










          • $begingroup$
            @SRS "H atom problem" is undefined. (I.e.: are you including fine structure and spin-orbit coupling?) If you're only talking about the Keplerian hamiltonian (i.e. kinetic energy plus electrostatic potential energy, with a frozen proton) then yes, a separable eigenbasis exists; there the $zeta_j$ are arbitrary (as there is no spin hamiltonian). If you're including spin-orbit coupling, then the hamiltonian does not satisfy the hypotheses I laid out, and the result is false.
            $endgroup$
            – Emilio Pisanty
            yesterday











          • $begingroup$
            Comments are not for back-and-forth - particularly about another user's question. If you have further queries, take them to chat or ask separately.
            $endgroup$
            – Emilio Pisanty
            yesterday










          • $begingroup$
            Is the statement that all the $H_spaceotimes I$ must commute with all the $Iotimes H_spin$ not redundant? From the way you have written them, it seems like they must commute, no?
            $endgroup$
            – user1936752
            yesterday










          • $begingroup$
            @user1936752 Yes, this is redundant, but I don't think it hurts.
            $endgroup$
            – Emilio Pisanty
            yesterday










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "151"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f468581%2fwhen-is-separating-the-total-wavefunction-into-a-space-part-and-a-spin-part-poss%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          11












          $begingroup$

          Your claim




          [any arbitrary] wavefunction of an electron $psi(vecr,s)$ can always be written as $$psi(vecr,s)=phi(vecr)zeta_s,m_s tag 1$$ where $phi(vecr)$ is the space part and $zeta_s,m_s$ is the spin part of the total wavefunction $psi(vecr,s)$




          is false. It is perfectly possible to produce wavefunctions which cannot be written in that separable form - for a simple example, just take two orthogonal spatial wavefunctions, $phi_1$ and $phi_2$, and two orthogonal spin states, $zeta_1$ and $zeta_2$, and define
          $$
          psi = frac1sqrt2bigg[phi_1zeta_1+phi_2zeta_2 bigg].
          $$



          Moreover, to be clear: the hamiltonian of a system has absolutely no effect on the allowed wavefunctions for that system. The only thing that depends on the hamiltonian is the energy eigenstates.



          The result you want is the following:




          If the hamiltonian is separable into spatial and spin components as $$ H = H_mathrmspaceotimes mathbb I+ mathbb I otimes H_mathrmspin,$$ with $H_mathrmspaceotimes mathbb I$ commuting with all spin operators and $mathbb I otimes H_mathrmspin$ commuting with all space operators, then there exists an eigenbasis for $H$ of the separable form $(1)$.




          To build that eigenbasis, simply diagonalize $H_mathrmspace$ and $H_mathrmspin$ independently, and form tensor products of their eigenstates. (Note also that the quantifiers here are crucial, particularly the "If" in the hypotheses and the "there exists" in the results.)






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            @SRS The claim is specifically that there exists a separable eigenbasis. There is no claim that all eigenbases for such a hamiltonian are separable, because that claim is false. Please read more carefully.
            $endgroup$
            – Emilio Pisanty
            yesterday










          • $begingroup$
            @SRS "H atom problem" is undefined. (I.e.: are you including fine structure and spin-orbit coupling?) If you're only talking about the Keplerian hamiltonian (i.e. kinetic energy plus electrostatic potential energy, with a frozen proton) then yes, a separable eigenbasis exists; there the $zeta_j$ are arbitrary (as there is no spin hamiltonian). If you're including spin-orbit coupling, then the hamiltonian does not satisfy the hypotheses I laid out, and the result is false.
            $endgroup$
            – Emilio Pisanty
            yesterday











          • $begingroup$
            Comments are not for back-and-forth - particularly about another user's question. If you have further queries, take them to chat or ask separately.
            $endgroup$
            – Emilio Pisanty
            yesterday










          • $begingroup$
            Is the statement that all the $H_spaceotimes I$ must commute with all the $Iotimes H_spin$ not redundant? From the way you have written them, it seems like they must commute, no?
            $endgroup$
            – user1936752
            yesterday










          • $begingroup$
            @user1936752 Yes, this is redundant, but I don't think it hurts.
            $endgroup$
            – Emilio Pisanty
            yesterday















          11












          $begingroup$

          Your claim




          [any arbitrary] wavefunction of an electron $psi(vecr,s)$ can always be written as $$psi(vecr,s)=phi(vecr)zeta_s,m_s tag 1$$ where $phi(vecr)$ is the space part and $zeta_s,m_s$ is the spin part of the total wavefunction $psi(vecr,s)$




          is false. It is perfectly possible to produce wavefunctions which cannot be written in that separable form - for a simple example, just take two orthogonal spatial wavefunctions, $phi_1$ and $phi_2$, and two orthogonal spin states, $zeta_1$ and $zeta_2$, and define
          $$
          psi = frac1sqrt2bigg[phi_1zeta_1+phi_2zeta_2 bigg].
          $$



          Moreover, to be clear: the hamiltonian of a system has absolutely no effect on the allowed wavefunctions for that system. The only thing that depends on the hamiltonian is the energy eigenstates.



          The result you want is the following:




          If the hamiltonian is separable into spatial and spin components as $$ H = H_mathrmspaceotimes mathbb I+ mathbb I otimes H_mathrmspin,$$ with $H_mathrmspaceotimes mathbb I$ commuting with all spin operators and $mathbb I otimes H_mathrmspin$ commuting with all space operators, then there exists an eigenbasis for $H$ of the separable form $(1)$.




          To build that eigenbasis, simply diagonalize $H_mathrmspace$ and $H_mathrmspin$ independently, and form tensor products of their eigenstates. (Note also that the quantifiers here are crucial, particularly the "If" in the hypotheses and the "there exists" in the results.)






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            @SRS The claim is specifically that there exists a separable eigenbasis. There is no claim that all eigenbases for such a hamiltonian are separable, because that claim is false. Please read more carefully.
            $endgroup$
            – Emilio Pisanty
            yesterday










          • $begingroup$
            @SRS "H atom problem" is undefined. (I.e.: are you including fine structure and spin-orbit coupling?) If you're only talking about the Keplerian hamiltonian (i.e. kinetic energy plus electrostatic potential energy, with a frozen proton) then yes, a separable eigenbasis exists; there the $zeta_j$ are arbitrary (as there is no spin hamiltonian). If you're including spin-orbit coupling, then the hamiltonian does not satisfy the hypotheses I laid out, and the result is false.
            $endgroup$
            – Emilio Pisanty
            yesterday











          • $begingroup$
            Comments are not for back-and-forth - particularly about another user's question. If you have further queries, take them to chat or ask separately.
            $endgroup$
            – Emilio Pisanty
            yesterday










          • $begingroup$
            Is the statement that all the $H_spaceotimes I$ must commute with all the $Iotimes H_spin$ not redundant? From the way you have written them, it seems like they must commute, no?
            $endgroup$
            – user1936752
            yesterday










          • $begingroup$
            @user1936752 Yes, this is redundant, but I don't think it hurts.
            $endgroup$
            – Emilio Pisanty
            yesterday













          11












          11








          11





          $begingroup$

          Your claim




          [any arbitrary] wavefunction of an electron $psi(vecr,s)$ can always be written as $$psi(vecr,s)=phi(vecr)zeta_s,m_s tag 1$$ where $phi(vecr)$ is the space part and $zeta_s,m_s$ is the spin part of the total wavefunction $psi(vecr,s)$




          is false. It is perfectly possible to produce wavefunctions which cannot be written in that separable form - for a simple example, just take two orthogonal spatial wavefunctions, $phi_1$ and $phi_2$, and two orthogonal spin states, $zeta_1$ and $zeta_2$, and define
          $$
          psi = frac1sqrt2bigg[phi_1zeta_1+phi_2zeta_2 bigg].
          $$



          Moreover, to be clear: the hamiltonian of a system has absolutely no effect on the allowed wavefunctions for that system. The only thing that depends on the hamiltonian is the energy eigenstates.



          The result you want is the following:




          If the hamiltonian is separable into spatial and spin components as $$ H = H_mathrmspaceotimes mathbb I+ mathbb I otimes H_mathrmspin,$$ with $H_mathrmspaceotimes mathbb I$ commuting with all spin operators and $mathbb I otimes H_mathrmspin$ commuting with all space operators, then there exists an eigenbasis for $H$ of the separable form $(1)$.




          To build that eigenbasis, simply diagonalize $H_mathrmspace$ and $H_mathrmspin$ independently, and form tensor products of their eigenstates. (Note also that the quantifiers here are crucial, particularly the "If" in the hypotheses and the "there exists" in the results.)






          share|cite|improve this answer











          $endgroup$



          Your claim




          [any arbitrary] wavefunction of an electron $psi(vecr,s)$ can always be written as $$psi(vecr,s)=phi(vecr)zeta_s,m_s tag 1$$ where $phi(vecr)$ is the space part and $zeta_s,m_s$ is the spin part of the total wavefunction $psi(vecr,s)$




          is false. It is perfectly possible to produce wavefunctions which cannot be written in that separable form - for a simple example, just take two orthogonal spatial wavefunctions, $phi_1$ and $phi_2$, and two orthogonal spin states, $zeta_1$ and $zeta_2$, and define
          $$
          psi = frac1sqrt2bigg[phi_1zeta_1+phi_2zeta_2 bigg].
          $$



          Moreover, to be clear: the hamiltonian of a system has absolutely no effect on the allowed wavefunctions for that system. The only thing that depends on the hamiltonian is the energy eigenstates.



          The result you want is the following:




          If the hamiltonian is separable into spatial and spin components as $$ H = H_mathrmspaceotimes mathbb I+ mathbb I otimes H_mathrmspin,$$ with $H_mathrmspaceotimes mathbb I$ commuting with all spin operators and $mathbb I otimes H_mathrmspin$ commuting with all space operators, then there exists an eigenbasis for $H$ of the separable form $(1)$.




          To build that eigenbasis, simply diagonalize $H_mathrmspace$ and $H_mathrmspin$ independently, and form tensor products of their eigenstates. (Note also that the quantifiers here are crucial, particularly the "If" in the hypotheses and the "there exists" in the results.)







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited yesterday

























          answered yesterday









          Emilio PisantyEmilio Pisanty

          86.1k23213433




          86.1k23213433







          • 1




            $begingroup$
            @SRS The claim is specifically that there exists a separable eigenbasis. There is no claim that all eigenbases for such a hamiltonian are separable, because that claim is false. Please read more carefully.
            $endgroup$
            – Emilio Pisanty
            yesterday










          • $begingroup$
            @SRS "H atom problem" is undefined. (I.e.: are you including fine structure and spin-orbit coupling?) If you're only talking about the Keplerian hamiltonian (i.e. kinetic energy plus electrostatic potential energy, with a frozen proton) then yes, a separable eigenbasis exists; there the $zeta_j$ are arbitrary (as there is no spin hamiltonian). If you're including spin-orbit coupling, then the hamiltonian does not satisfy the hypotheses I laid out, and the result is false.
            $endgroup$
            – Emilio Pisanty
            yesterday











          • $begingroup$
            Comments are not for back-and-forth - particularly about another user's question. If you have further queries, take them to chat or ask separately.
            $endgroup$
            – Emilio Pisanty
            yesterday










          • $begingroup$
            Is the statement that all the $H_spaceotimes I$ must commute with all the $Iotimes H_spin$ not redundant? From the way you have written them, it seems like they must commute, no?
            $endgroup$
            – user1936752
            yesterday










          • $begingroup$
            @user1936752 Yes, this is redundant, but I don't think it hurts.
            $endgroup$
            – Emilio Pisanty
            yesterday












          • 1




            $begingroup$
            @SRS The claim is specifically that there exists a separable eigenbasis. There is no claim that all eigenbases for such a hamiltonian are separable, because that claim is false. Please read more carefully.
            $endgroup$
            – Emilio Pisanty
            yesterday










          • $begingroup$
            @SRS "H atom problem" is undefined. (I.e.: are you including fine structure and spin-orbit coupling?) If you're only talking about the Keplerian hamiltonian (i.e. kinetic energy plus electrostatic potential energy, with a frozen proton) then yes, a separable eigenbasis exists; there the $zeta_j$ are arbitrary (as there is no spin hamiltonian). If you're including spin-orbit coupling, then the hamiltonian does not satisfy the hypotheses I laid out, and the result is false.
            $endgroup$
            – Emilio Pisanty
            yesterday











          • $begingroup$
            Comments are not for back-and-forth - particularly about another user's question. If you have further queries, take them to chat or ask separately.
            $endgroup$
            – Emilio Pisanty
            yesterday










          • $begingroup$
            Is the statement that all the $H_spaceotimes I$ must commute with all the $Iotimes H_spin$ not redundant? From the way you have written them, it seems like they must commute, no?
            $endgroup$
            – user1936752
            yesterday










          • $begingroup$
            @user1936752 Yes, this is redundant, but I don't think it hurts.
            $endgroup$
            – Emilio Pisanty
            yesterday







          1




          1




          $begingroup$
          @SRS The claim is specifically that there exists a separable eigenbasis. There is no claim that all eigenbases for such a hamiltonian are separable, because that claim is false. Please read more carefully.
          $endgroup$
          – Emilio Pisanty
          yesterday




          $begingroup$
          @SRS The claim is specifically that there exists a separable eigenbasis. There is no claim that all eigenbases for such a hamiltonian are separable, because that claim is false. Please read more carefully.
          $endgroup$
          – Emilio Pisanty
          yesterday












          $begingroup$
          @SRS "H atom problem" is undefined. (I.e.: are you including fine structure and spin-orbit coupling?) If you're only talking about the Keplerian hamiltonian (i.e. kinetic energy plus electrostatic potential energy, with a frozen proton) then yes, a separable eigenbasis exists; there the $zeta_j$ are arbitrary (as there is no spin hamiltonian). If you're including spin-orbit coupling, then the hamiltonian does not satisfy the hypotheses I laid out, and the result is false.
          $endgroup$
          – Emilio Pisanty
          yesterday





          $begingroup$
          @SRS "H atom problem" is undefined. (I.e.: are you including fine structure and spin-orbit coupling?) If you're only talking about the Keplerian hamiltonian (i.e. kinetic energy plus electrostatic potential energy, with a frozen proton) then yes, a separable eigenbasis exists; there the $zeta_j$ are arbitrary (as there is no spin hamiltonian). If you're including spin-orbit coupling, then the hamiltonian does not satisfy the hypotheses I laid out, and the result is false.
          $endgroup$
          – Emilio Pisanty
          yesterday













          $begingroup$
          Comments are not for back-and-forth - particularly about another user's question. If you have further queries, take them to chat or ask separately.
          $endgroup$
          – Emilio Pisanty
          yesterday




          $begingroup$
          Comments are not for back-and-forth - particularly about another user's question. If you have further queries, take them to chat or ask separately.
          $endgroup$
          – Emilio Pisanty
          yesterday












          $begingroup$
          Is the statement that all the $H_spaceotimes I$ must commute with all the $Iotimes H_spin$ not redundant? From the way you have written them, it seems like they must commute, no?
          $endgroup$
          – user1936752
          yesterday




          $begingroup$
          Is the statement that all the $H_spaceotimes I$ must commute with all the $Iotimes H_spin$ not redundant? From the way you have written them, it seems like they must commute, no?
          $endgroup$
          – user1936752
          yesterday












          $begingroup$
          @user1936752 Yes, this is redundant, but I don't think it hurts.
          $endgroup$
          – Emilio Pisanty
          yesterday




          $begingroup$
          @user1936752 Yes, this is redundant, but I don't think it hurts.
          $endgroup$
          – Emilio Pisanty
          yesterday

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Physics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f468581%2fwhen-is-separating-the-total-wavefunction-into-a-space-part-and-a-spin-part-poss%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          getting Checkpoint VPN SSL Network Extender working in the command lineHow to connect to CheckPoint VPN on Ubuntu 18.04LTS?Will the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayVPN SSL Network Extender in FirefoxLinux Checkpoint SNX tool configuration issuesCheck Point - Connect under Linux - snx + OTPSNX VPN Ububuntu 18.XXUsing Checkpoint VPN SSL Network Extender CLI with certificateVPN with network manager (nm-applet) is not workingWill the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayImport VPN config files to NetworkManager from command lineTrouble connecting to VPN using network-manager, while command line worksStart a VPN connection with PPTP protocol on command linestarting a docker service daemon breaks the vpn networkCan't connect to vpn with Network-managerVPN SSL Network Extender in FirefoxUsing Checkpoint VPN SSL Network Extender CLI with certificate

          Cannot Extend partition with GParted The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Community Moderator Election ResultsCan't increase partition size with GParted?GParted doesn't recognize the unallocated space after my current partitionWhat is the best way to add unallocated space located before to Ubuntu 12.04 partition with GParted live?I can't figure out how to extend my Arch home partition into free spaceGparted Linux Mint 18.1 issueTrying to extend but swap partition is showing as Unknown in Gparted, shows proper from fdiskRearrange partitions in gparted to extend a partitionUnable to extend partition even though unallocated space is next to it using GPartedAllocate free space to root partitiongparted: how to merge unallocated space with a partition

          Marilyn Monroe Ny fiainany manokana | Jereo koa | Meny fitetezanafanitarana azy.