When is separating the total wavefunction into a space part and a spin part possible?Anti-symmetric 2 particle wave functionA conceptual question about spinAntisymmetry requirement for the total wavefunctionConnection between singlet, triplet two-electron states and the Slater determinantMeasuring total angular momentum of two electronsTwo identical particlesConfusion on good quantum numbersSpectrum of two particles system hamiltonianAbout the symmetric spatial part of a two-electron wavefunction: Can it be that $r_1= r_2$ less favoured than $|r_1-r_2|neq 0$?What is the simplest possible Hamiltonian that yields an Antisymmetric Wavefunction?
Coordinate position not precise
Why are on-board computers allowed to change controls without notifying the pilots?
How can I get through very long and very dry, but also very useful technical documents when learning a new tool?
How was Earth single-handedly capable of creating 3 of the 4 gods of chaos?
What to do with wrong results in talks?
What would be the benefits of having both a state and local currencies?
There is only s̶i̶x̶t̶y one place he can be
Do there exist finite commutative rings with identity that are not Bézout rings?
Student evaluations of teaching assistants
Is there a problem with hiding "forgot password" until it's needed?
Products and sum of cubes in Fibonacci
Can somebody explain Brexit in a few child-proof sentences?
Implement the Thanos sorting algorithm
How do I keep an essay about "feeling flat" from feeling flat?
Is the destination of a commercial flight important for the pilot?
Using parameter substitution on a Bash array
Where in the Bible does the greeting ("Dominus Vobiscum") used at Mass come from?
What't the meaning of this extra silence?
Personal Teleportation as a Weapon
Ways to speed up user implemented RK4
What are the ramifications of creating a homebrew world without an Astral Plane?
Can I use my Chinese passport to enter China after I acquired another citizenship?
How do I define a right arrow with bar in LaTeX?
Generic lambda vs generic function give different behaviour
When is separating the total wavefunction into a space part and a spin part possible?
Anti-symmetric 2 particle wave functionA conceptual question about spinAntisymmetry requirement for the total wavefunctionConnection between singlet, triplet two-electron states and the Slater determinantMeasuring total angular momentum of two electronsTwo identical particlesConfusion on good quantum numbersSpectrum of two particles system hamiltonianAbout the symmetric spatial part of a two-electron wavefunction: Can it be that $r_1= r_2$ less favoured than $|r_1-r_2|neq 0$?What is the simplest possible Hamiltonian that yields an Antisymmetric Wavefunction?
$begingroup$
The total wavefunction of an electron $psi(vecr,s)$ can always be written as $$psi(vecr,s)=phi(vecr)zeta_s,m_s$$ where $phi(vecr)$ is the space part and $zeta_s,m_s$ is the spin part of the total wavefunction $psi(vecr,s)$. In my notation, $s=1/2, m_s=pm 1/2$.
Question 1 Is the above statement true? I am asking about any wavefunction here. Not only about energy eigenfunctions.
Now imagine a system of two electrons. Even without any knowledge about the Hamiltonian of the system, the overall wavefunction $psi(vecr_1,vecr_2;s_1,s_2)$ is antisymmetric. I think (I have this impression) under this general conditions, it is not possible to decompose $psi(vecr_1,vecr_2;s_1,s_2)$ into a product of a space part and spin part. However, if the Hamiltonian is spin-independent, only then can we do such a decomposition into space part and spin part.
Question 2 Can someone properly argue that how this is so? Please mention about any wavefunction of the system and about energy eigenfunctions.
quantum-mechanics wavefunction quantum-spin pauli-exclusion-principle identical-particles
$endgroup$
add a comment |
$begingroup$
The total wavefunction of an electron $psi(vecr,s)$ can always be written as $$psi(vecr,s)=phi(vecr)zeta_s,m_s$$ where $phi(vecr)$ is the space part and $zeta_s,m_s$ is the spin part of the total wavefunction $psi(vecr,s)$. In my notation, $s=1/2, m_s=pm 1/2$.
Question 1 Is the above statement true? I am asking about any wavefunction here. Not only about energy eigenfunctions.
Now imagine a system of two electrons. Even without any knowledge about the Hamiltonian of the system, the overall wavefunction $psi(vecr_1,vecr_2;s_1,s_2)$ is antisymmetric. I think (I have this impression) under this general conditions, it is not possible to decompose $psi(vecr_1,vecr_2;s_1,s_2)$ into a product of a space part and spin part. However, if the Hamiltonian is spin-independent, only then can we do such a decomposition into space part and spin part.
Question 2 Can someone properly argue that how this is so? Please mention about any wavefunction of the system and about energy eigenfunctions.
quantum-mechanics wavefunction quantum-spin pauli-exclusion-principle identical-particles
$endgroup$
add a comment |
$begingroup$
The total wavefunction of an electron $psi(vecr,s)$ can always be written as $$psi(vecr,s)=phi(vecr)zeta_s,m_s$$ where $phi(vecr)$ is the space part and $zeta_s,m_s$ is the spin part of the total wavefunction $psi(vecr,s)$. In my notation, $s=1/2, m_s=pm 1/2$.
Question 1 Is the above statement true? I am asking about any wavefunction here. Not only about energy eigenfunctions.
Now imagine a system of two electrons. Even without any knowledge about the Hamiltonian of the system, the overall wavefunction $psi(vecr_1,vecr_2;s_1,s_2)$ is antisymmetric. I think (I have this impression) under this general conditions, it is not possible to decompose $psi(vecr_1,vecr_2;s_1,s_2)$ into a product of a space part and spin part. However, if the Hamiltonian is spin-independent, only then can we do such a decomposition into space part and spin part.
Question 2 Can someone properly argue that how this is so? Please mention about any wavefunction of the system and about energy eigenfunctions.
quantum-mechanics wavefunction quantum-spin pauli-exclusion-principle identical-particles
$endgroup$
The total wavefunction of an electron $psi(vecr,s)$ can always be written as $$psi(vecr,s)=phi(vecr)zeta_s,m_s$$ where $phi(vecr)$ is the space part and $zeta_s,m_s$ is the spin part of the total wavefunction $psi(vecr,s)$. In my notation, $s=1/2, m_s=pm 1/2$.
Question 1 Is the above statement true? I am asking about any wavefunction here. Not only about energy eigenfunctions.
Now imagine a system of two electrons. Even without any knowledge about the Hamiltonian of the system, the overall wavefunction $psi(vecr_1,vecr_2;s_1,s_2)$ is antisymmetric. I think (I have this impression) under this general conditions, it is not possible to decompose $psi(vecr_1,vecr_2;s_1,s_2)$ into a product of a space part and spin part. However, if the Hamiltonian is spin-independent, only then can we do such a decomposition into space part and spin part.
Question 2 Can someone properly argue that how this is so? Please mention about any wavefunction of the system and about energy eigenfunctions.
quantum-mechanics wavefunction quantum-spin pauli-exclusion-principle identical-particles
quantum-mechanics wavefunction quantum-spin pauli-exclusion-principle identical-particles
edited yesterday
mithusengupta123
asked yesterday
mithusengupta123mithusengupta123
1,32311539
1,32311539
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Your claim
[any arbitrary] wavefunction of an electron $psi(vecr,s)$ can always be written as $$psi(vecr,s)=phi(vecr)zeta_s,m_s tag 1$$ where $phi(vecr)$ is the space part and $zeta_s,m_s$ is the spin part of the total wavefunction $psi(vecr,s)$
is false. It is perfectly possible to produce wavefunctions which cannot be written in that separable form - for a simple example, just take two orthogonal spatial wavefunctions, $phi_1$ and $phi_2$, and two orthogonal spin states, $zeta_1$ and $zeta_2$, and define
$$
psi = frac1sqrt2bigg[phi_1zeta_1+phi_2zeta_2 bigg].
$$
Moreover, to be clear: the hamiltonian of a system has absolutely no effect on the allowed wavefunctions for that system. The only thing that depends on the hamiltonian is the energy eigenstates.
The result you want is the following:
If the hamiltonian is separable into spatial and spin components as $$ H = H_mathrmspaceotimes mathbb I+ mathbb I otimes H_mathrmspin,$$ with $H_mathrmspaceotimes mathbb I$ commuting with all spin operators and $mathbb I otimes H_mathrmspin$ commuting with all space operators, then there exists an eigenbasis for $H$ of the separable form $(1)$.
To build that eigenbasis, simply diagonalize $H_mathrmspace$ and $H_mathrmspin$ independently, and form tensor products of their eigenstates. (Note also that the quantifiers here are crucial, particularly the "If" in the hypotheses and the "there exists" in the results.)
$endgroup$
1
$begingroup$
@SRS The claim is specifically that there exists a separable eigenbasis. There is no claim that all eigenbases for such a hamiltonian are separable, because that claim is false. Please read more carefully.
$endgroup$
– Emilio Pisanty
yesterday
$begingroup$
@SRS "H atom problem" is undefined. (I.e.: are you including fine structure and spin-orbit coupling?) If you're only talking about the Keplerian hamiltonian (i.e. kinetic energy plus electrostatic potential energy, with a frozen proton) then yes, a separable eigenbasis exists; there the $zeta_j$ are arbitrary (as there is no spin hamiltonian). If you're including spin-orbit coupling, then the hamiltonian does not satisfy the hypotheses I laid out, and the result is false.
$endgroup$
– Emilio Pisanty
yesterday
$begingroup$
Comments are not for back-and-forth - particularly about another user's question. If you have further queries, take them to chat or ask separately.
$endgroup$
– Emilio Pisanty
yesterday
$begingroup$
Is the statement that all the $H_spaceotimes I$ must commute with all the $Iotimes H_spin$ not redundant? From the way you have written them, it seems like they must commute, no?
$endgroup$
– user1936752
yesterday
$begingroup$
@user1936752 Yes, this is redundant, but I don't think it hurts.
$endgroup$
– Emilio Pisanty
yesterday
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "151"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f468581%2fwhen-is-separating-the-total-wavefunction-into-a-space-part-and-a-spin-part-poss%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your claim
[any arbitrary] wavefunction of an electron $psi(vecr,s)$ can always be written as $$psi(vecr,s)=phi(vecr)zeta_s,m_s tag 1$$ where $phi(vecr)$ is the space part and $zeta_s,m_s$ is the spin part of the total wavefunction $psi(vecr,s)$
is false. It is perfectly possible to produce wavefunctions which cannot be written in that separable form - for a simple example, just take two orthogonal spatial wavefunctions, $phi_1$ and $phi_2$, and two orthogonal spin states, $zeta_1$ and $zeta_2$, and define
$$
psi = frac1sqrt2bigg[phi_1zeta_1+phi_2zeta_2 bigg].
$$
Moreover, to be clear: the hamiltonian of a system has absolutely no effect on the allowed wavefunctions for that system. The only thing that depends on the hamiltonian is the energy eigenstates.
The result you want is the following:
If the hamiltonian is separable into spatial and spin components as $$ H = H_mathrmspaceotimes mathbb I+ mathbb I otimes H_mathrmspin,$$ with $H_mathrmspaceotimes mathbb I$ commuting with all spin operators and $mathbb I otimes H_mathrmspin$ commuting with all space operators, then there exists an eigenbasis for $H$ of the separable form $(1)$.
To build that eigenbasis, simply diagonalize $H_mathrmspace$ and $H_mathrmspin$ independently, and form tensor products of their eigenstates. (Note also that the quantifiers here are crucial, particularly the "If" in the hypotheses and the "there exists" in the results.)
$endgroup$
1
$begingroup$
@SRS The claim is specifically that there exists a separable eigenbasis. There is no claim that all eigenbases for such a hamiltonian are separable, because that claim is false. Please read more carefully.
$endgroup$
– Emilio Pisanty
yesterday
$begingroup$
@SRS "H atom problem" is undefined. (I.e.: are you including fine structure and spin-orbit coupling?) If you're only talking about the Keplerian hamiltonian (i.e. kinetic energy plus electrostatic potential energy, with a frozen proton) then yes, a separable eigenbasis exists; there the $zeta_j$ are arbitrary (as there is no spin hamiltonian). If you're including spin-orbit coupling, then the hamiltonian does not satisfy the hypotheses I laid out, and the result is false.
$endgroup$
– Emilio Pisanty
yesterday
$begingroup$
Comments are not for back-and-forth - particularly about another user's question. If you have further queries, take them to chat or ask separately.
$endgroup$
– Emilio Pisanty
yesterday
$begingroup$
Is the statement that all the $H_spaceotimes I$ must commute with all the $Iotimes H_spin$ not redundant? From the way you have written them, it seems like they must commute, no?
$endgroup$
– user1936752
yesterday
$begingroup$
@user1936752 Yes, this is redundant, but I don't think it hurts.
$endgroup$
– Emilio Pisanty
yesterday
add a comment |
$begingroup$
Your claim
[any arbitrary] wavefunction of an electron $psi(vecr,s)$ can always be written as $$psi(vecr,s)=phi(vecr)zeta_s,m_s tag 1$$ where $phi(vecr)$ is the space part and $zeta_s,m_s$ is the spin part of the total wavefunction $psi(vecr,s)$
is false. It is perfectly possible to produce wavefunctions which cannot be written in that separable form - for a simple example, just take two orthogonal spatial wavefunctions, $phi_1$ and $phi_2$, and two orthogonal spin states, $zeta_1$ and $zeta_2$, and define
$$
psi = frac1sqrt2bigg[phi_1zeta_1+phi_2zeta_2 bigg].
$$
Moreover, to be clear: the hamiltonian of a system has absolutely no effect on the allowed wavefunctions for that system. The only thing that depends on the hamiltonian is the energy eigenstates.
The result you want is the following:
If the hamiltonian is separable into spatial and spin components as $$ H = H_mathrmspaceotimes mathbb I+ mathbb I otimes H_mathrmspin,$$ with $H_mathrmspaceotimes mathbb I$ commuting with all spin operators and $mathbb I otimes H_mathrmspin$ commuting with all space operators, then there exists an eigenbasis for $H$ of the separable form $(1)$.
To build that eigenbasis, simply diagonalize $H_mathrmspace$ and $H_mathrmspin$ independently, and form tensor products of their eigenstates. (Note also that the quantifiers here are crucial, particularly the "If" in the hypotheses and the "there exists" in the results.)
$endgroup$
1
$begingroup$
@SRS The claim is specifically that there exists a separable eigenbasis. There is no claim that all eigenbases for such a hamiltonian are separable, because that claim is false. Please read more carefully.
$endgroup$
– Emilio Pisanty
yesterday
$begingroup$
@SRS "H atom problem" is undefined. (I.e.: are you including fine structure and spin-orbit coupling?) If you're only talking about the Keplerian hamiltonian (i.e. kinetic energy plus electrostatic potential energy, with a frozen proton) then yes, a separable eigenbasis exists; there the $zeta_j$ are arbitrary (as there is no spin hamiltonian). If you're including spin-orbit coupling, then the hamiltonian does not satisfy the hypotheses I laid out, and the result is false.
$endgroup$
– Emilio Pisanty
yesterday
$begingroup$
Comments are not for back-and-forth - particularly about another user's question. If you have further queries, take them to chat or ask separately.
$endgroup$
– Emilio Pisanty
yesterday
$begingroup$
Is the statement that all the $H_spaceotimes I$ must commute with all the $Iotimes H_spin$ not redundant? From the way you have written them, it seems like they must commute, no?
$endgroup$
– user1936752
yesterday
$begingroup$
@user1936752 Yes, this is redundant, but I don't think it hurts.
$endgroup$
– Emilio Pisanty
yesterday
add a comment |
$begingroup$
Your claim
[any arbitrary] wavefunction of an electron $psi(vecr,s)$ can always be written as $$psi(vecr,s)=phi(vecr)zeta_s,m_s tag 1$$ where $phi(vecr)$ is the space part and $zeta_s,m_s$ is the spin part of the total wavefunction $psi(vecr,s)$
is false. It is perfectly possible to produce wavefunctions which cannot be written in that separable form - for a simple example, just take two orthogonal spatial wavefunctions, $phi_1$ and $phi_2$, and two orthogonal spin states, $zeta_1$ and $zeta_2$, and define
$$
psi = frac1sqrt2bigg[phi_1zeta_1+phi_2zeta_2 bigg].
$$
Moreover, to be clear: the hamiltonian of a system has absolutely no effect on the allowed wavefunctions for that system. The only thing that depends on the hamiltonian is the energy eigenstates.
The result you want is the following:
If the hamiltonian is separable into spatial and spin components as $$ H = H_mathrmspaceotimes mathbb I+ mathbb I otimes H_mathrmspin,$$ with $H_mathrmspaceotimes mathbb I$ commuting with all spin operators and $mathbb I otimes H_mathrmspin$ commuting with all space operators, then there exists an eigenbasis for $H$ of the separable form $(1)$.
To build that eigenbasis, simply diagonalize $H_mathrmspace$ and $H_mathrmspin$ independently, and form tensor products of their eigenstates. (Note also that the quantifiers here are crucial, particularly the "If" in the hypotheses and the "there exists" in the results.)
$endgroup$
Your claim
[any arbitrary] wavefunction of an electron $psi(vecr,s)$ can always be written as $$psi(vecr,s)=phi(vecr)zeta_s,m_s tag 1$$ where $phi(vecr)$ is the space part and $zeta_s,m_s$ is the spin part of the total wavefunction $psi(vecr,s)$
is false. It is perfectly possible to produce wavefunctions which cannot be written in that separable form - for a simple example, just take two orthogonal spatial wavefunctions, $phi_1$ and $phi_2$, and two orthogonal spin states, $zeta_1$ and $zeta_2$, and define
$$
psi = frac1sqrt2bigg[phi_1zeta_1+phi_2zeta_2 bigg].
$$
Moreover, to be clear: the hamiltonian of a system has absolutely no effect on the allowed wavefunctions for that system. The only thing that depends on the hamiltonian is the energy eigenstates.
The result you want is the following:
If the hamiltonian is separable into spatial and spin components as $$ H = H_mathrmspaceotimes mathbb I+ mathbb I otimes H_mathrmspin,$$ with $H_mathrmspaceotimes mathbb I$ commuting with all spin operators and $mathbb I otimes H_mathrmspin$ commuting with all space operators, then there exists an eigenbasis for $H$ of the separable form $(1)$.
To build that eigenbasis, simply diagonalize $H_mathrmspace$ and $H_mathrmspin$ independently, and form tensor products of their eigenstates. (Note also that the quantifiers here are crucial, particularly the "If" in the hypotheses and the "there exists" in the results.)
edited yesterday
answered yesterday
Emilio PisantyEmilio Pisanty
86.1k23213433
86.1k23213433
1
$begingroup$
@SRS The claim is specifically that there exists a separable eigenbasis. There is no claim that all eigenbases for such a hamiltonian are separable, because that claim is false. Please read more carefully.
$endgroup$
– Emilio Pisanty
yesterday
$begingroup$
@SRS "H atom problem" is undefined. (I.e.: are you including fine structure and spin-orbit coupling?) If you're only talking about the Keplerian hamiltonian (i.e. kinetic energy plus electrostatic potential energy, with a frozen proton) then yes, a separable eigenbasis exists; there the $zeta_j$ are arbitrary (as there is no spin hamiltonian). If you're including spin-orbit coupling, then the hamiltonian does not satisfy the hypotheses I laid out, and the result is false.
$endgroup$
– Emilio Pisanty
yesterday
$begingroup$
Comments are not for back-and-forth - particularly about another user's question. If you have further queries, take them to chat or ask separately.
$endgroup$
– Emilio Pisanty
yesterday
$begingroup$
Is the statement that all the $H_spaceotimes I$ must commute with all the $Iotimes H_spin$ not redundant? From the way you have written them, it seems like they must commute, no?
$endgroup$
– user1936752
yesterday
$begingroup$
@user1936752 Yes, this is redundant, but I don't think it hurts.
$endgroup$
– Emilio Pisanty
yesterday
add a comment |
1
$begingroup$
@SRS The claim is specifically that there exists a separable eigenbasis. There is no claim that all eigenbases for such a hamiltonian are separable, because that claim is false. Please read more carefully.
$endgroup$
– Emilio Pisanty
yesterday
$begingroup$
@SRS "H atom problem" is undefined. (I.e.: are you including fine structure and spin-orbit coupling?) If you're only talking about the Keplerian hamiltonian (i.e. kinetic energy plus electrostatic potential energy, with a frozen proton) then yes, a separable eigenbasis exists; there the $zeta_j$ are arbitrary (as there is no spin hamiltonian). If you're including spin-orbit coupling, then the hamiltonian does not satisfy the hypotheses I laid out, and the result is false.
$endgroup$
– Emilio Pisanty
yesterday
$begingroup$
Comments are not for back-and-forth - particularly about another user's question. If you have further queries, take them to chat or ask separately.
$endgroup$
– Emilio Pisanty
yesterday
$begingroup$
Is the statement that all the $H_spaceotimes I$ must commute with all the $Iotimes H_spin$ not redundant? From the way you have written them, it seems like they must commute, no?
$endgroup$
– user1936752
yesterday
$begingroup$
@user1936752 Yes, this is redundant, but I don't think it hurts.
$endgroup$
– Emilio Pisanty
yesterday
1
1
$begingroup$
@SRS The claim is specifically that there exists a separable eigenbasis. There is no claim that all eigenbases for such a hamiltonian are separable, because that claim is false. Please read more carefully.
$endgroup$
– Emilio Pisanty
yesterday
$begingroup$
@SRS The claim is specifically that there exists a separable eigenbasis. There is no claim that all eigenbases for such a hamiltonian are separable, because that claim is false. Please read more carefully.
$endgroup$
– Emilio Pisanty
yesterday
$begingroup$
@SRS "H atom problem" is undefined. (I.e.: are you including fine structure and spin-orbit coupling?) If you're only talking about the Keplerian hamiltonian (i.e. kinetic energy plus electrostatic potential energy, with a frozen proton) then yes, a separable eigenbasis exists; there the $zeta_j$ are arbitrary (as there is no spin hamiltonian). If you're including spin-orbit coupling, then the hamiltonian does not satisfy the hypotheses I laid out, and the result is false.
$endgroup$
– Emilio Pisanty
yesterday
$begingroup$
@SRS "H atom problem" is undefined. (I.e.: are you including fine structure and spin-orbit coupling?) If you're only talking about the Keplerian hamiltonian (i.e. kinetic energy plus electrostatic potential energy, with a frozen proton) then yes, a separable eigenbasis exists; there the $zeta_j$ are arbitrary (as there is no spin hamiltonian). If you're including spin-orbit coupling, then the hamiltonian does not satisfy the hypotheses I laid out, and the result is false.
$endgroup$
– Emilio Pisanty
yesterday
$begingroup$
Comments are not for back-and-forth - particularly about another user's question. If you have further queries, take them to chat or ask separately.
$endgroup$
– Emilio Pisanty
yesterday
$begingroup$
Comments are not for back-and-forth - particularly about another user's question. If you have further queries, take them to chat or ask separately.
$endgroup$
– Emilio Pisanty
yesterday
$begingroup$
Is the statement that all the $H_spaceotimes I$ must commute with all the $Iotimes H_spin$ not redundant? From the way you have written them, it seems like they must commute, no?
$endgroup$
– user1936752
yesterday
$begingroup$
Is the statement that all the $H_spaceotimes I$ must commute with all the $Iotimes H_spin$ not redundant? From the way you have written them, it seems like they must commute, no?
$endgroup$
– user1936752
yesterday
$begingroup$
@user1936752 Yes, this is redundant, but I don't think it hurts.
$endgroup$
– Emilio Pisanty
yesterday
$begingroup$
@user1936752 Yes, this is redundant, but I don't think it hurts.
$endgroup$
– Emilio Pisanty
yesterday
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f468581%2fwhen-is-separating-the-total-wavefunction-into-a-space-part-and-a-spin-part-poss%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown