A box has $4$ red and $20$ white balls. A person takes $10$ balls. What is the probability that all or none of the red balls were taken?Box A has 3 red and 7 white ballsWe have two boxes, in box #1 there are 7 white balls and 5 red balls…probabilityA box contains 5 blue balls, 4 red balls and 9 green balls. A person takes out 3 balls from the box.An urn has 3 red balls 4 white balls and 2 black ballsConditional probability on red and white ballsBoth balls are red. What is the probability that they both came from the same box?Suppose there are 9 white balls and 3 red balls. A,B,C take turns to pick a ball without replacement . The first person to get a red ball wins.What is the probability that the person picks up all three red balls?drawing 2 red balls from box contains 3 red balls and 7 white ballsA box contains 3 red balls and 2 white balls

Freedom of speech and where it applies

Can I use my Chinese passport to enter China after I acquired another citizenship?

Why do IPv6 unique local addresses have to have a /48 prefix?

Global amount of publications over time

Can I sign legal documents with a smiley face?

THT: What is a squared annular “ring”?

API Access HTML/Javascript

Aligning individual characters/glyphs like a monospace font

A social experiment. What is the worst that can happen?

What does the Rambam mean when he says that the planets have souls?

What is the gram­mat­i­cal term for “‑ed” words like these?

Are all species of CANNA edible?

How will losing mobility of one hand affect my career as a programmer?

What is this type of notehead called?

Can a significant change in incentives void an employment contract?

Bob has never been a M before

Did US corporations pay demonstrators in the German demonstrations against article 13?

If a character with the Alert feat rolls a crit fail on their Perception check, are they surprised?

Can somebody explain Brexit in a few child-proof sentences?

Can we have a perfect cadence in a minor key?

Divine apple island

Could the E-bike drivetrain wear down till needing replacement after 400 km?

Indicating multiple different modes of speech (fantasy language or telepathy)

Can the Supreme Court overturn an impeachment?



A box has $4$ red and $20$ white balls. A person takes $10$ balls. What is the probability that all or none of the red balls were taken?


Box A has 3 red and 7 white ballsWe have two boxes, in box #1 there are 7 white balls and 5 red balls…probabilityA box contains 5 blue balls, 4 red balls and 9 green balls. A person takes out 3 balls from the box.An urn has 3 red balls 4 white balls and 2 black ballsConditional probability on red and white ballsBoth balls are red. What is the probability that they both came from the same box?Suppose there are 9 white balls and 3 red balls. A,B,C take turns to pick a ball without replacement . The first person to get a red ball wins.What is the probability that the person picks up all three red balls?drawing 2 red balls from box contains 3 red balls and 7 white ballsA box contains 3 red balls and 2 white balls













3












$begingroup$


A box has $24$ balls, $4$ red and $20$ white. One person takes $10$ balls and the second the remaining $14$. What is the probability that one of the two people picked up the $4$ red ones?



I don't understand why is this correct.



$$frac20 choose 6+20 choose 1024 choose 10 $$










share|cite|improve this question











$endgroup$
















    3












    $begingroup$


    A box has $24$ balls, $4$ red and $20$ white. One person takes $10$ balls and the second the remaining $14$. What is the probability that one of the two people picked up the $4$ red ones?



    I don't understand why is this correct.



    $$frac20 choose 6+20 choose 1024 choose 10 $$










    share|cite|improve this question











    $endgroup$














      3












      3








      3





      $begingroup$


      A box has $24$ balls, $4$ red and $20$ white. One person takes $10$ balls and the second the remaining $14$. What is the probability that one of the two people picked up the $4$ red ones?



      I don't understand why is this correct.



      $$frac20 choose 6+20 choose 1024 choose 10 $$










      share|cite|improve this question











      $endgroup$




      A box has $24$ balls, $4$ red and $20$ white. One person takes $10$ balls and the second the remaining $14$. What is the probability that one of the two people picked up the $4$ red ones?



      I don't understand why is this correct.



      $$frac20 choose 6+20 choose 1024 choose 10 $$







      probability combinatorics






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited yesterday









      user

      5,81311031




      5,81311031










      asked yesterday









      GuidoGuido

      355




      355




















          4 Answers
          4






          active

          oldest

          votes


















          4












          $begingroup$

          Because $tfracbinom 44binom206binom1414binom2410binom1414$ is the probability that the first person select 4 red and 6 white and the second person receives the remaining 14 white, while $tfracbinom2010binom44binom1010binom2410binom1414$ is the probability that the first person selects 10 white and second person select 4 red and 10 white.



          $$~\dfracbinom 44binom206binom1414+binom2010binom44binom1010binom2410binom1414=dfracbinom206+binom2010binom2410$$






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            I would assume that $binom204$ in the final expression is a typo...
            $endgroup$
            – user
            yesterday










          • $begingroup$
            Yas. Good catch.
            $endgroup$
            – Graham Kemp
            yesterday


















          4












          $begingroup$

          You can use the Hypergeometric distribution.



          a) The probability that the first person pick up 4 red ones is $fracbinom44cdot binom206binom2410$



          Then the (conditional) probability that the second person does not pick up 4 red ones is just $1.$



          b) The probability that the first person does not pick up 4 red ones is $fracbinom40cdot binom2010binom2410$



          The (conditional) probability that the second person pick up 4 red one is $fracbinom44cdot binom1010binom1414=1$



          So in total we have



          $$fracbinom44cdot binom206binom2410+fracbinom40cdot binom2010binom2410=frac binom206binom2410+frac binom2010binom2410=fracbinom206+ binom2010binom2410$$






          share|cite|improve this answer









          $endgroup$




















            1












            $begingroup$

            There are two ways for a "good event" to occur in this probability space: either player one picks up all 4 red balls (first type of good event), or player 1 picks up none of the red balls (second type of good event; equivalent to saying player 2 picks up all red balls).



            The total number of ways that the first type of good event can occur is the number of ways we can pick 10 - 4 = 6 balls amond 24 - 4 = 20 balls after we fix that player one has selected the 4 red balls. In other words, there are $20 choose 6$ ways the first type of good event can occur.



            The total number of ways that the second type of good event may occur is the number of ways player one can pick all of his balls exclusively from the white balls. Since there are 20 white balls and player 1 picks 10 balls in total, this gives us $20 choose 10$ ways for the second type of good event to occur.



            Since the two "good" event spaces are mutually exclusive (player 1 can't pick all the red balls and none of the red balls at the same time), we can add them up obtain the total number of good event (the numerator in the solution you provided), and divide this by the size of the probability space (the total number of ways player 1 can pick 10 balls from 24, which is your denominator term).



            Does this answer your question?






            share|cite|improve this answer








            New contributor




            ChrisHansen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            $endgroup$




















              1












              $begingroup$

              Firstly, note that the events are mutually exclusive events. Therefore, the probability overall is the sum of the probability of the first person and second person selecting 4 red balls.



              The number of ways the first person selects the 4 red balls is the same as the number of ways they can select the remaining six as white balls (they have 10 chances in total) from the 20 white balls available. This can be done in $24-4choose6$ ways



              The number of ways the second person selects the 4 red balls is the same as the number of ways they can select the remaining ten as white balls (they have 14 chances on total) from the 20 white balls available. This can be done in $24-4choose10$ ways.



              The total number of ways to split the 24 balls is $24choose10$



              Therefore, the probability is what you put down.






              share|cite|improve this answer










              New contributor




              aman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
              Check out our Code of Conduct.






              $endgroup$












                Your Answer





                StackExchange.ifUsing("editor", function ()
                return StackExchange.using("mathjaxEditing", function ()
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                );
                );
                , "mathjax-editing");

                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "69"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader:
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                ,
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );













                draft saved

                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3159522%2fa-box-has-4-red-and-20-white-balls-a-person-takes-10-balls-what-is-the-p%23new-answer', 'question_page');

                );

                Post as a guest















                Required, but never shown

























                4 Answers
                4






                active

                oldest

                votes








                4 Answers
                4






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                4












                $begingroup$

                Because $tfracbinom 44binom206binom1414binom2410binom1414$ is the probability that the first person select 4 red and 6 white and the second person receives the remaining 14 white, while $tfracbinom2010binom44binom1010binom2410binom1414$ is the probability that the first person selects 10 white and second person select 4 red and 10 white.



                $$~\dfracbinom 44binom206binom1414+binom2010binom44binom1010binom2410binom1414=dfracbinom206+binom2010binom2410$$






                share|cite|improve this answer











                $endgroup$








                • 1




                  $begingroup$
                  I would assume that $binom204$ in the final expression is a typo...
                  $endgroup$
                  – user
                  yesterday










                • $begingroup$
                  Yas. Good catch.
                  $endgroup$
                  – Graham Kemp
                  yesterday















                4












                $begingroup$

                Because $tfracbinom 44binom206binom1414binom2410binom1414$ is the probability that the first person select 4 red and 6 white and the second person receives the remaining 14 white, while $tfracbinom2010binom44binom1010binom2410binom1414$ is the probability that the first person selects 10 white and second person select 4 red and 10 white.



                $$~\dfracbinom 44binom206binom1414+binom2010binom44binom1010binom2410binom1414=dfracbinom206+binom2010binom2410$$






                share|cite|improve this answer











                $endgroup$








                • 1




                  $begingroup$
                  I would assume that $binom204$ in the final expression is a typo...
                  $endgroup$
                  – user
                  yesterday










                • $begingroup$
                  Yas. Good catch.
                  $endgroup$
                  – Graham Kemp
                  yesterday













                4












                4








                4





                $begingroup$

                Because $tfracbinom 44binom206binom1414binom2410binom1414$ is the probability that the first person select 4 red and 6 white and the second person receives the remaining 14 white, while $tfracbinom2010binom44binom1010binom2410binom1414$ is the probability that the first person selects 10 white and second person select 4 red and 10 white.



                $$~\dfracbinom 44binom206binom1414+binom2010binom44binom1010binom2410binom1414=dfracbinom206+binom2010binom2410$$






                share|cite|improve this answer











                $endgroup$



                Because $tfracbinom 44binom206binom1414binom2410binom1414$ is the probability that the first person select 4 red and 6 white and the second person receives the remaining 14 white, while $tfracbinom2010binom44binom1010binom2410binom1414$ is the probability that the first person selects 10 white and second person select 4 red and 10 white.



                $$~\dfracbinom 44binom206binom1414+binom2010binom44binom1010binom2410binom1414=dfracbinom206+binom2010binom2410$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited yesterday

























                answered yesterday









                Graham KempGraham Kemp

                87.2k43579




                87.2k43579







                • 1




                  $begingroup$
                  I would assume that $binom204$ in the final expression is a typo...
                  $endgroup$
                  – user
                  yesterday










                • $begingroup$
                  Yas. Good catch.
                  $endgroup$
                  – Graham Kemp
                  yesterday












                • 1




                  $begingroup$
                  I would assume that $binom204$ in the final expression is a typo...
                  $endgroup$
                  – user
                  yesterday










                • $begingroup$
                  Yas. Good catch.
                  $endgroup$
                  – Graham Kemp
                  yesterday







                1




                1




                $begingroup$
                I would assume that $binom204$ in the final expression is a typo...
                $endgroup$
                – user
                yesterday




                $begingroup$
                I would assume that $binom204$ in the final expression is a typo...
                $endgroup$
                – user
                yesterday












                $begingroup$
                Yas. Good catch.
                $endgroup$
                – Graham Kemp
                yesterday




                $begingroup$
                Yas. Good catch.
                $endgroup$
                – Graham Kemp
                yesterday











                4












                $begingroup$

                You can use the Hypergeometric distribution.



                a) The probability that the first person pick up 4 red ones is $fracbinom44cdot binom206binom2410$



                Then the (conditional) probability that the second person does not pick up 4 red ones is just $1.$



                b) The probability that the first person does not pick up 4 red ones is $fracbinom40cdot binom2010binom2410$



                The (conditional) probability that the second person pick up 4 red one is $fracbinom44cdot binom1010binom1414=1$



                So in total we have



                $$fracbinom44cdot binom206binom2410+fracbinom40cdot binom2010binom2410=frac binom206binom2410+frac binom2010binom2410=fracbinom206+ binom2010binom2410$$






                share|cite|improve this answer









                $endgroup$

















                  4












                  $begingroup$

                  You can use the Hypergeometric distribution.



                  a) The probability that the first person pick up 4 red ones is $fracbinom44cdot binom206binom2410$



                  Then the (conditional) probability that the second person does not pick up 4 red ones is just $1.$



                  b) The probability that the first person does not pick up 4 red ones is $fracbinom40cdot binom2010binom2410$



                  The (conditional) probability that the second person pick up 4 red one is $fracbinom44cdot binom1010binom1414=1$



                  So in total we have



                  $$fracbinom44cdot binom206binom2410+fracbinom40cdot binom2010binom2410=frac binom206binom2410+frac binom2010binom2410=fracbinom206+ binom2010binom2410$$






                  share|cite|improve this answer









                  $endgroup$















                    4












                    4








                    4





                    $begingroup$

                    You can use the Hypergeometric distribution.



                    a) The probability that the first person pick up 4 red ones is $fracbinom44cdot binom206binom2410$



                    Then the (conditional) probability that the second person does not pick up 4 red ones is just $1.$



                    b) The probability that the first person does not pick up 4 red ones is $fracbinom40cdot binom2010binom2410$



                    The (conditional) probability that the second person pick up 4 red one is $fracbinom44cdot binom1010binom1414=1$



                    So in total we have



                    $$fracbinom44cdot binom206binom2410+fracbinom40cdot binom2010binom2410=frac binom206binom2410+frac binom2010binom2410=fracbinom206+ binom2010binom2410$$






                    share|cite|improve this answer









                    $endgroup$



                    You can use the Hypergeometric distribution.



                    a) The probability that the first person pick up 4 red ones is $fracbinom44cdot binom206binom2410$



                    Then the (conditional) probability that the second person does not pick up 4 red ones is just $1.$



                    b) The probability that the first person does not pick up 4 red ones is $fracbinom40cdot binom2010binom2410$



                    The (conditional) probability that the second person pick up 4 red one is $fracbinom44cdot binom1010binom1414=1$



                    So in total we have



                    $$fracbinom44cdot binom206binom2410+fracbinom40cdot binom2010binom2410=frac binom206binom2410+frac binom2010binom2410=fracbinom206+ binom2010binom2410$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered yesterday









                    callculuscallculus

                    18.5k31428




                    18.5k31428





















                        1












                        $begingroup$

                        There are two ways for a "good event" to occur in this probability space: either player one picks up all 4 red balls (first type of good event), or player 1 picks up none of the red balls (second type of good event; equivalent to saying player 2 picks up all red balls).



                        The total number of ways that the first type of good event can occur is the number of ways we can pick 10 - 4 = 6 balls amond 24 - 4 = 20 balls after we fix that player one has selected the 4 red balls. In other words, there are $20 choose 6$ ways the first type of good event can occur.



                        The total number of ways that the second type of good event may occur is the number of ways player one can pick all of his balls exclusively from the white balls. Since there are 20 white balls and player 1 picks 10 balls in total, this gives us $20 choose 10$ ways for the second type of good event to occur.



                        Since the two "good" event spaces are mutually exclusive (player 1 can't pick all the red balls and none of the red balls at the same time), we can add them up obtain the total number of good event (the numerator in the solution you provided), and divide this by the size of the probability space (the total number of ways player 1 can pick 10 balls from 24, which is your denominator term).



                        Does this answer your question?






                        share|cite|improve this answer








                        New contributor




                        ChrisHansen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                        Check out our Code of Conduct.






                        $endgroup$

















                          1












                          $begingroup$

                          There are two ways for a "good event" to occur in this probability space: either player one picks up all 4 red balls (first type of good event), or player 1 picks up none of the red balls (second type of good event; equivalent to saying player 2 picks up all red balls).



                          The total number of ways that the first type of good event can occur is the number of ways we can pick 10 - 4 = 6 balls amond 24 - 4 = 20 balls after we fix that player one has selected the 4 red balls. In other words, there are $20 choose 6$ ways the first type of good event can occur.



                          The total number of ways that the second type of good event may occur is the number of ways player one can pick all of his balls exclusively from the white balls. Since there are 20 white balls and player 1 picks 10 balls in total, this gives us $20 choose 10$ ways for the second type of good event to occur.



                          Since the two "good" event spaces are mutually exclusive (player 1 can't pick all the red balls and none of the red balls at the same time), we can add them up obtain the total number of good event (the numerator in the solution you provided), and divide this by the size of the probability space (the total number of ways player 1 can pick 10 balls from 24, which is your denominator term).



                          Does this answer your question?






                          share|cite|improve this answer








                          New contributor




                          ChrisHansen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                          Check out our Code of Conduct.






                          $endgroup$















                            1












                            1








                            1





                            $begingroup$

                            There are two ways for a "good event" to occur in this probability space: either player one picks up all 4 red balls (first type of good event), or player 1 picks up none of the red balls (second type of good event; equivalent to saying player 2 picks up all red balls).



                            The total number of ways that the first type of good event can occur is the number of ways we can pick 10 - 4 = 6 balls amond 24 - 4 = 20 balls after we fix that player one has selected the 4 red balls. In other words, there are $20 choose 6$ ways the first type of good event can occur.



                            The total number of ways that the second type of good event may occur is the number of ways player one can pick all of his balls exclusively from the white balls. Since there are 20 white balls and player 1 picks 10 balls in total, this gives us $20 choose 10$ ways for the second type of good event to occur.



                            Since the two "good" event spaces are mutually exclusive (player 1 can't pick all the red balls and none of the red balls at the same time), we can add them up obtain the total number of good event (the numerator in the solution you provided), and divide this by the size of the probability space (the total number of ways player 1 can pick 10 balls from 24, which is your denominator term).



                            Does this answer your question?






                            share|cite|improve this answer








                            New contributor




                            ChrisHansen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.






                            $endgroup$



                            There are two ways for a "good event" to occur in this probability space: either player one picks up all 4 red balls (first type of good event), or player 1 picks up none of the red balls (second type of good event; equivalent to saying player 2 picks up all red balls).



                            The total number of ways that the first type of good event can occur is the number of ways we can pick 10 - 4 = 6 balls amond 24 - 4 = 20 balls after we fix that player one has selected the 4 red balls. In other words, there are $20 choose 6$ ways the first type of good event can occur.



                            The total number of ways that the second type of good event may occur is the number of ways player one can pick all of his balls exclusively from the white balls. Since there are 20 white balls and player 1 picks 10 balls in total, this gives us $20 choose 10$ ways for the second type of good event to occur.



                            Since the two "good" event spaces are mutually exclusive (player 1 can't pick all the red balls and none of the red balls at the same time), we can add them up obtain the total number of good event (the numerator in the solution you provided), and divide this by the size of the probability space (the total number of ways player 1 can pick 10 balls from 24, which is your denominator term).



                            Does this answer your question?







                            share|cite|improve this answer








                            New contributor




                            ChrisHansen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.









                            share|cite|improve this answer



                            share|cite|improve this answer






                            New contributor




                            ChrisHansen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.









                            answered yesterday









                            ChrisHansenChrisHansen

                            111




                            111




                            New contributor




                            ChrisHansen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.





                            New contributor





                            ChrisHansen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.






                            ChrisHansen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.





















                                1












                                $begingroup$

                                Firstly, note that the events are mutually exclusive events. Therefore, the probability overall is the sum of the probability of the first person and second person selecting 4 red balls.



                                The number of ways the first person selects the 4 red balls is the same as the number of ways they can select the remaining six as white balls (they have 10 chances in total) from the 20 white balls available. This can be done in $24-4choose6$ ways



                                The number of ways the second person selects the 4 red balls is the same as the number of ways they can select the remaining ten as white balls (they have 14 chances on total) from the 20 white balls available. This can be done in $24-4choose10$ ways.



                                The total number of ways to split the 24 balls is $24choose10$



                                Therefore, the probability is what you put down.






                                share|cite|improve this answer










                                New contributor




                                aman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                Check out our Code of Conduct.






                                $endgroup$

















                                  1












                                  $begingroup$

                                  Firstly, note that the events are mutually exclusive events. Therefore, the probability overall is the sum of the probability of the first person and second person selecting 4 red balls.



                                  The number of ways the first person selects the 4 red balls is the same as the number of ways they can select the remaining six as white balls (they have 10 chances in total) from the 20 white balls available. This can be done in $24-4choose6$ ways



                                  The number of ways the second person selects the 4 red balls is the same as the number of ways they can select the remaining ten as white balls (they have 14 chances on total) from the 20 white balls available. This can be done in $24-4choose10$ ways.



                                  The total number of ways to split the 24 balls is $24choose10$



                                  Therefore, the probability is what you put down.






                                  share|cite|improve this answer










                                  New contributor




                                  aman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                  Check out our Code of Conduct.






                                  $endgroup$















                                    1












                                    1








                                    1





                                    $begingroup$

                                    Firstly, note that the events are mutually exclusive events. Therefore, the probability overall is the sum of the probability of the first person and second person selecting 4 red balls.



                                    The number of ways the first person selects the 4 red balls is the same as the number of ways they can select the remaining six as white balls (they have 10 chances in total) from the 20 white balls available. This can be done in $24-4choose6$ ways



                                    The number of ways the second person selects the 4 red balls is the same as the number of ways they can select the remaining ten as white balls (they have 14 chances on total) from the 20 white balls available. This can be done in $24-4choose10$ ways.



                                    The total number of ways to split the 24 balls is $24choose10$



                                    Therefore, the probability is what you put down.






                                    share|cite|improve this answer










                                    New contributor




                                    aman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                    Check out our Code of Conduct.






                                    $endgroup$



                                    Firstly, note that the events are mutually exclusive events. Therefore, the probability overall is the sum of the probability of the first person and second person selecting 4 red balls.



                                    The number of ways the first person selects the 4 red balls is the same as the number of ways they can select the remaining six as white balls (they have 10 chances in total) from the 20 white balls available. This can be done in $24-4choose6$ ways



                                    The number of ways the second person selects the 4 red balls is the same as the number of ways they can select the remaining ten as white balls (they have 14 chances on total) from the 20 white balls available. This can be done in $24-4choose10$ ways.



                                    The total number of ways to split the 24 balls is $24choose10$



                                    Therefore, the probability is what you put down.







                                    share|cite|improve this answer










                                    New contributor




                                    aman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                    Check out our Code of Conduct.









                                    share|cite|improve this answer



                                    share|cite|improve this answer








                                    edited yesterday





















                                    New contributor




                                    aman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                    Check out our Code of Conduct.









                                    answered yesterday









                                    amanaman

                                    927




                                    927




                                    New contributor




                                    aman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                    Check out our Code of Conduct.





                                    New contributor





                                    aman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                    Check out our Code of Conduct.






                                    aman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                    Check out our Code of Conduct.



























                                        draft saved

                                        draft discarded
















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid


                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.

                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3159522%2fa-box-has-4-red-and-20-white-balls-a-person-takes-10-balls-what-is-the-p%23new-answer', 'question_page');

                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        getting Checkpoint VPN SSL Network Extender working in the command lineHow to connect to CheckPoint VPN on Ubuntu 18.04LTS?Will the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayVPN SSL Network Extender in FirefoxLinux Checkpoint SNX tool configuration issuesCheck Point - Connect under Linux - snx + OTPSNX VPN Ububuntu 18.XXUsing Checkpoint VPN SSL Network Extender CLI with certificateVPN with network manager (nm-applet) is not workingWill the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayImport VPN config files to NetworkManager from command lineTrouble connecting to VPN using network-manager, while command line worksStart a VPN connection with PPTP protocol on command linestarting a docker service daemon breaks the vpn networkCan't connect to vpn with Network-managerVPN SSL Network Extender in FirefoxUsing Checkpoint VPN SSL Network Extender CLI with certificate

                                        Cannot Extend partition with GParted The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Community Moderator Election ResultsCan't increase partition size with GParted?GParted doesn't recognize the unallocated space after my current partitionWhat is the best way to add unallocated space located before to Ubuntu 12.04 partition with GParted live?I can't figure out how to extend my Arch home partition into free spaceGparted Linux Mint 18.1 issueTrying to extend but swap partition is showing as Unknown in Gparted, shows proper from fdiskRearrange partitions in gparted to extend a partitionUnable to extend partition even though unallocated space is next to it using GPartedAllocate free space to root partitiongparted: how to merge unallocated space with a partition

                                        Marilyn Monroe Ny fiainany manokana | Jereo koa | Meny fitetezanafanitarana azy.