Is Witten's Proof of the Positive Mass Theorem Rigorous?What happens to Newtonian systems as the mass vanishes?What's the current state of Yang Mills Mass Gap question?Interpreting Witten's Asymptotic Expansion of the WRT invariant.A survey on positive mass theorem?question about the proof of the positive mass theoremWitten's proof of Morse inequalities, question on eigenvalues?Fock Space Proof of $(g(x)phi^4)_2$ Mass Gap?A step in the proof on the uniqueness of massColeman–Mandula theorem and a mathematical proofThe converse to the positive mass theorem

Is Witten's Proof of the Positive Mass Theorem Rigorous?


What happens to Newtonian systems as the mass vanishes?What's the current state of Yang Mills Mass Gap question?Interpreting Witten's Asymptotic Expansion of the WRT invariant.A survey on positive mass theorem?question about the proof of the positive mass theoremWitten's proof of Morse inequalities, question on eigenvalues?Fock Space Proof of $(g(x)phi^4)_2$ Mass Gap?A step in the proof on the uniqueness of massColeman–Mandula theorem and a mathematical proofThe converse to the positive mass theorem













16












$begingroup$


I noticed that the only official reason given for awarding Edward Witten the Fields Medal was his 1981 proof of the positive mass theorem with spinors, so I was assuming that the proof was fully rigorous.



However, I came across this paper https://projecteuclid.org/download/pdf_1/euclid.cmp/1103921154 by Taubes and Parker which claims to make Witten's proof 'mathematically rigorous' and to justify assumptions which Witten made about Dirac operators. Does this mean that the Witten proof is not rigorous, or is it just the case that there were some unjustified lemmas to clear up which do not affect the validity or rigour of the argument (similar to the case of Perelman's proof of the Poincare conjecture, where some lemmas and slight gaps had to be filled in)?



I am just curious as I have never really heard of the Taubes-Parker paper so I was assuming that the Witten paper was fully rigorous.










share|cite|improve this question









$endgroup$







  • 2




    $begingroup$
    I think some clarification on what is meant by 'fully rigorous' would help, and possibly avoid some close votes -- questions like 'is xyz's proof of conjecture abc valid' are too opinion based, but if you could point to specific arguments/lemmas that appear nebulous for specific mathematical reasons it seems a good question. For example we could interpret 'fully rigorous' as 'being proved directly from the axioms of some set theory/logic' in which case the answer is obviously no, but this is not generally the bar for rigor in mathematics outside logic and set theory.
    $endgroup$
    – Alec Rhea
    yesterday






  • 4




    $begingroup$
    Following @AlecRhea’s good points, I’d suggest the most productive way to frame this question isn’t “Is Witten’s proof rigorous?” so much as “How rigorous was Witten’s proof, and what is its relationship to later more rigorous elaborations like Taubes–Parker?” There is a spectrum different levels of rigour short of a full proof: a full sketch with some details missing; a sketch with most details omitted; a detailed outline; a heuristic argument which turns out to guide an eventual full proof; a heuristic argument that motivates the result but doesn’t form the basis of any proof…
    $endgroup$
    – Peter LeFanu Lumsdaine
    yesterday










  • $begingroup$
    @AlecRhea I think questions about the validity of the proof of conjecture abc are referring to Mochizuki, not xyz...
    $endgroup$
    – user1728
    yesterday















16












$begingroup$


I noticed that the only official reason given for awarding Edward Witten the Fields Medal was his 1981 proof of the positive mass theorem with spinors, so I was assuming that the proof was fully rigorous.



However, I came across this paper https://projecteuclid.org/download/pdf_1/euclid.cmp/1103921154 by Taubes and Parker which claims to make Witten's proof 'mathematically rigorous' and to justify assumptions which Witten made about Dirac operators. Does this mean that the Witten proof is not rigorous, or is it just the case that there were some unjustified lemmas to clear up which do not affect the validity or rigour of the argument (similar to the case of Perelman's proof of the Poincare conjecture, where some lemmas and slight gaps had to be filled in)?



I am just curious as I have never really heard of the Taubes-Parker paper so I was assuming that the Witten paper was fully rigorous.










share|cite|improve this question









$endgroup$







  • 2




    $begingroup$
    I think some clarification on what is meant by 'fully rigorous' would help, and possibly avoid some close votes -- questions like 'is xyz's proof of conjecture abc valid' are too opinion based, but if you could point to specific arguments/lemmas that appear nebulous for specific mathematical reasons it seems a good question. For example we could interpret 'fully rigorous' as 'being proved directly from the axioms of some set theory/logic' in which case the answer is obviously no, but this is not generally the bar for rigor in mathematics outside logic and set theory.
    $endgroup$
    – Alec Rhea
    yesterday






  • 4




    $begingroup$
    Following @AlecRhea’s good points, I’d suggest the most productive way to frame this question isn’t “Is Witten’s proof rigorous?” so much as “How rigorous was Witten’s proof, and what is its relationship to later more rigorous elaborations like Taubes–Parker?” There is a spectrum different levels of rigour short of a full proof: a full sketch with some details missing; a sketch with most details omitted; a detailed outline; a heuristic argument which turns out to guide an eventual full proof; a heuristic argument that motivates the result but doesn’t form the basis of any proof…
    $endgroup$
    – Peter LeFanu Lumsdaine
    yesterday










  • $begingroup$
    @AlecRhea I think questions about the validity of the proof of conjecture abc are referring to Mochizuki, not xyz...
    $endgroup$
    – user1728
    yesterday













16












16








16


4



$begingroup$


I noticed that the only official reason given for awarding Edward Witten the Fields Medal was his 1981 proof of the positive mass theorem with spinors, so I was assuming that the proof was fully rigorous.



However, I came across this paper https://projecteuclid.org/download/pdf_1/euclid.cmp/1103921154 by Taubes and Parker which claims to make Witten's proof 'mathematically rigorous' and to justify assumptions which Witten made about Dirac operators. Does this mean that the Witten proof is not rigorous, or is it just the case that there were some unjustified lemmas to clear up which do not affect the validity or rigour of the argument (similar to the case of Perelman's proof of the Poincare conjecture, where some lemmas and slight gaps had to be filled in)?



I am just curious as I have never really heard of the Taubes-Parker paper so I was assuming that the Witten paper was fully rigorous.










share|cite|improve this question









$endgroup$




I noticed that the only official reason given for awarding Edward Witten the Fields Medal was his 1981 proof of the positive mass theorem with spinors, so I was assuming that the proof was fully rigorous.



However, I came across this paper https://projecteuclid.org/download/pdf_1/euclid.cmp/1103921154 by Taubes and Parker which claims to make Witten's proof 'mathematically rigorous' and to justify assumptions which Witten made about Dirac operators. Does this mean that the Witten proof is not rigorous, or is it just the case that there were some unjustified lemmas to clear up which do not affect the validity or rigour of the argument (similar to the case of Perelman's proof of the Poincare conjecture, where some lemmas and slight gaps had to be filled in)?



I am just curious as I have never really heard of the Taubes-Parker paper so I was assuming that the Witten paper was fully rigorous.







mp.mathematical-physics general-relativity dirac-operator spinor






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked yesterday









TomTom

405311




405311







  • 2




    $begingroup$
    I think some clarification on what is meant by 'fully rigorous' would help, and possibly avoid some close votes -- questions like 'is xyz's proof of conjecture abc valid' are too opinion based, but if you could point to specific arguments/lemmas that appear nebulous for specific mathematical reasons it seems a good question. For example we could interpret 'fully rigorous' as 'being proved directly from the axioms of some set theory/logic' in which case the answer is obviously no, but this is not generally the bar for rigor in mathematics outside logic and set theory.
    $endgroup$
    – Alec Rhea
    yesterday






  • 4




    $begingroup$
    Following @AlecRhea’s good points, I’d suggest the most productive way to frame this question isn’t “Is Witten’s proof rigorous?” so much as “How rigorous was Witten’s proof, and what is its relationship to later more rigorous elaborations like Taubes–Parker?” There is a spectrum different levels of rigour short of a full proof: a full sketch with some details missing; a sketch with most details omitted; a detailed outline; a heuristic argument which turns out to guide an eventual full proof; a heuristic argument that motivates the result but doesn’t form the basis of any proof…
    $endgroup$
    – Peter LeFanu Lumsdaine
    yesterday










  • $begingroup$
    @AlecRhea I think questions about the validity of the proof of conjecture abc are referring to Mochizuki, not xyz...
    $endgroup$
    – user1728
    yesterday












  • 2




    $begingroup$
    I think some clarification on what is meant by 'fully rigorous' would help, and possibly avoid some close votes -- questions like 'is xyz's proof of conjecture abc valid' are too opinion based, but if you could point to specific arguments/lemmas that appear nebulous for specific mathematical reasons it seems a good question. For example we could interpret 'fully rigorous' as 'being proved directly from the axioms of some set theory/logic' in which case the answer is obviously no, but this is not generally the bar for rigor in mathematics outside logic and set theory.
    $endgroup$
    – Alec Rhea
    yesterday






  • 4




    $begingroup$
    Following @AlecRhea’s good points, I’d suggest the most productive way to frame this question isn’t “Is Witten’s proof rigorous?” so much as “How rigorous was Witten’s proof, and what is its relationship to later more rigorous elaborations like Taubes–Parker?” There is a spectrum different levels of rigour short of a full proof: a full sketch with some details missing; a sketch with most details omitted; a detailed outline; a heuristic argument which turns out to guide an eventual full proof; a heuristic argument that motivates the result but doesn’t form the basis of any proof…
    $endgroup$
    – Peter LeFanu Lumsdaine
    yesterday










  • $begingroup$
    @AlecRhea I think questions about the validity of the proof of conjecture abc are referring to Mochizuki, not xyz...
    $endgroup$
    – user1728
    yesterday







2




2




$begingroup$
I think some clarification on what is meant by 'fully rigorous' would help, and possibly avoid some close votes -- questions like 'is xyz's proof of conjecture abc valid' are too opinion based, but if you could point to specific arguments/lemmas that appear nebulous for specific mathematical reasons it seems a good question. For example we could interpret 'fully rigorous' as 'being proved directly from the axioms of some set theory/logic' in which case the answer is obviously no, but this is not generally the bar for rigor in mathematics outside logic and set theory.
$endgroup$
– Alec Rhea
yesterday




$begingroup$
I think some clarification on what is meant by 'fully rigorous' would help, and possibly avoid some close votes -- questions like 'is xyz's proof of conjecture abc valid' are too opinion based, but if you could point to specific arguments/lemmas that appear nebulous for specific mathematical reasons it seems a good question. For example we could interpret 'fully rigorous' as 'being proved directly from the axioms of some set theory/logic' in which case the answer is obviously no, but this is not generally the bar for rigor in mathematics outside logic and set theory.
$endgroup$
– Alec Rhea
yesterday




4




4




$begingroup$
Following @AlecRhea’s good points, I’d suggest the most productive way to frame this question isn’t “Is Witten’s proof rigorous?” so much as “How rigorous was Witten’s proof, and what is its relationship to later more rigorous elaborations like Taubes–Parker?” There is a spectrum different levels of rigour short of a full proof: a full sketch with some details missing; a sketch with most details omitted; a detailed outline; a heuristic argument which turns out to guide an eventual full proof; a heuristic argument that motivates the result but doesn’t form the basis of any proof…
$endgroup$
– Peter LeFanu Lumsdaine
yesterday




$begingroup$
Following @AlecRhea’s good points, I’d suggest the most productive way to frame this question isn’t “Is Witten’s proof rigorous?” so much as “How rigorous was Witten’s proof, and what is its relationship to later more rigorous elaborations like Taubes–Parker?” There is a spectrum different levels of rigour short of a full proof: a full sketch with some details missing; a sketch with most details omitted; a detailed outline; a heuristic argument which turns out to guide an eventual full proof; a heuristic argument that motivates the result but doesn’t form the basis of any proof…
$endgroup$
– Peter LeFanu Lumsdaine
yesterday












$begingroup$
@AlecRhea I think questions about the validity of the proof of conjecture abc are referring to Mochizuki, not xyz...
$endgroup$
– user1728
yesterday




$begingroup$
@AlecRhea I think questions about the validity of the proof of conjecture abc are referring to Mochizuki, not xyz...
$endgroup$
– user1728
yesterday










1 Answer
1






active

oldest

votes


















9












$begingroup$

You should probably read the conclusion (Section 6) of Atiyah's laudatio on Witten work during the 1990 ICM (specifically, the positive mass theorem is treated in Section 3).




6. Conclusion



From this very brief summary of Witten's achievements it should be clear that
he has made a profound impact on contemporary mathematics. In his hands
physics is once again providing a rich source of inspiration and insight in
mathematics. Of course physical insight does not always lead to immediately
rigorous mathematical proofs but it frequently leads one in the right direction,
and technically correct proofs can then hopefully be found. This is the case with
Witten's work. So far his insight has never let him down and rigorous proofs, of
the standard we mathematicians rightly expect, have always been forthcoming.
There is therefore no doubt that contributions to mathematics of this order are
fully worthy of a Fields Medal.







share|cite|improve this answer











$endgroup$








  • 4




    $begingroup$
    I have read it and do not doubt Witten's contributions to physics or to mathematics: I was asking specifically about the proof of the positive mass theorem which was given as the official reason on the citation.
    $endgroup$
    – Tom
    yesterday






  • 1




    $begingroup$
    The proof of positive mass theorem is treated in Part 3 of the laudatio. It is called a "outline", so actually some technical detail was missing, but the idea was completely correct. That said, I do not know why only that result has been given as official reason for the prize, since the laudatio contains much more.
    $endgroup$
    – Francesco Polizzi
    yesterday










  • $begingroup$
    OK, maybe that was my confusion, as that is literally the only reason given and that has always seemed very strange to me. I'm not saying that his proof of the positive mass theorem was not a very significant achievement.
    $endgroup$
    – Tom
    yesterday










  • $begingroup$
    @Tom : What do you mean by "literally the only reason given"? I don't think that the IMU or the Fields Medal Committee produces a piece of text for each medalist and declares that text, and only that text, to be the "official reason" for awarding the medal. No such "official citations" appear on the IMU website, for example. I suspect that if you ask any former committee member, they will say that the reasons for the choices are complicated, and that any public statement or press release is not intended to be a comprehensive statement of those reasons.
    $endgroup$
    – Timothy Chow
    8 hours ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "504"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326116%2fis-wittens-proof-of-the-positive-mass-theorem-rigorous%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









9












$begingroup$

You should probably read the conclusion (Section 6) of Atiyah's laudatio on Witten work during the 1990 ICM (specifically, the positive mass theorem is treated in Section 3).




6. Conclusion



From this very brief summary of Witten's achievements it should be clear that
he has made a profound impact on contemporary mathematics. In his hands
physics is once again providing a rich source of inspiration and insight in
mathematics. Of course physical insight does not always lead to immediately
rigorous mathematical proofs but it frequently leads one in the right direction,
and technically correct proofs can then hopefully be found. This is the case with
Witten's work. So far his insight has never let him down and rigorous proofs, of
the standard we mathematicians rightly expect, have always been forthcoming.
There is therefore no doubt that contributions to mathematics of this order are
fully worthy of a Fields Medal.







share|cite|improve this answer











$endgroup$








  • 4




    $begingroup$
    I have read it and do not doubt Witten's contributions to physics or to mathematics: I was asking specifically about the proof of the positive mass theorem which was given as the official reason on the citation.
    $endgroup$
    – Tom
    yesterday






  • 1




    $begingroup$
    The proof of positive mass theorem is treated in Part 3 of the laudatio. It is called a "outline", so actually some technical detail was missing, but the idea was completely correct. That said, I do not know why only that result has been given as official reason for the prize, since the laudatio contains much more.
    $endgroup$
    – Francesco Polizzi
    yesterday










  • $begingroup$
    OK, maybe that was my confusion, as that is literally the only reason given and that has always seemed very strange to me. I'm not saying that his proof of the positive mass theorem was not a very significant achievement.
    $endgroup$
    – Tom
    yesterday










  • $begingroup$
    @Tom : What do you mean by "literally the only reason given"? I don't think that the IMU or the Fields Medal Committee produces a piece of text for each medalist and declares that text, and only that text, to be the "official reason" for awarding the medal. No such "official citations" appear on the IMU website, for example. I suspect that if you ask any former committee member, they will say that the reasons for the choices are complicated, and that any public statement or press release is not intended to be a comprehensive statement of those reasons.
    $endgroup$
    – Timothy Chow
    8 hours ago
















9












$begingroup$

You should probably read the conclusion (Section 6) of Atiyah's laudatio on Witten work during the 1990 ICM (specifically, the positive mass theorem is treated in Section 3).




6. Conclusion



From this very brief summary of Witten's achievements it should be clear that
he has made a profound impact on contemporary mathematics. In his hands
physics is once again providing a rich source of inspiration and insight in
mathematics. Of course physical insight does not always lead to immediately
rigorous mathematical proofs but it frequently leads one in the right direction,
and technically correct proofs can then hopefully be found. This is the case with
Witten's work. So far his insight has never let him down and rigorous proofs, of
the standard we mathematicians rightly expect, have always been forthcoming.
There is therefore no doubt that contributions to mathematics of this order are
fully worthy of a Fields Medal.







share|cite|improve this answer











$endgroup$








  • 4




    $begingroup$
    I have read it and do not doubt Witten's contributions to physics or to mathematics: I was asking specifically about the proof of the positive mass theorem which was given as the official reason on the citation.
    $endgroup$
    – Tom
    yesterday






  • 1




    $begingroup$
    The proof of positive mass theorem is treated in Part 3 of the laudatio. It is called a "outline", so actually some technical detail was missing, but the idea was completely correct. That said, I do not know why only that result has been given as official reason for the prize, since the laudatio contains much more.
    $endgroup$
    – Francesco Polizzi
    yesterday










  • $begingroup$
    OK, maybe that was my confusion, as that is literally the only reason given and that has always seemed very strange to me. I'm not saying that his proof of the positive mass theorem was not a very significant achievement.
    $endgroup$
    – Tom
    yesterday










  • $begingroup$
    @Tom : What do you mean by "literally the only reason given"? I don't think that the IMU or the Fields Medal Committee produces a piece of text for each medalist and declares that text, and only that text, to be the "official reason" for awarding the medal. No such "official citations" appear on the IMU website, for example. I suspect that if you ask any former committee member, they will say that the reasons for the choices are complicated, and that any public statement or press release is not intended to be a comprehensive statement of those reasons.
    $endgroup$
    – Timothy Chow
    8 hours ago














9












9








9





$begingroup$

You should probably read the conclusion (Section 6) of Atiyah's laudatio on Witten work during the 1990 ICM (specifically, the positive mass theorem is treated in Section 3).




6. Conclusion



From this very brief summary of Witten's achievements it should be clear that
he has made a profound impact on contemporary mathematics. In his hands
physics is once again providing a rich source of inspiration and insight in
mathematics. Of course physical insight does not always lead to immediately
rigorous mathematical proofs but it frequently leads one in the right direction,
and technically correct proofs can then hopefully be found. This is the case with
Witten's work. So far his insight has never let him down and rigorous proofs, of
the standard we mathematicians rightly expect, have always been forthcoming.
There is therefore no doubt that contributions to mathematics of this order are
fully worthy of a Fields Medal.







share|cite|improve this answer











$endgroup$



You should probably read the conclusion (Section 6) of Atiyah's laudatio on Witten work during the 1990 ICM (specifically, the positive mass theorem is treated in Section 3).




6. Conclusion



From this very brief summary of Witten's achievements it should be clear that
he has made a profound impact on contemporary mathematics. In his hands
physics is once again providing a rich source of inspiration and insight in
mathematics. Of course physical insight does not always lead to immediately
rigorous mathematical proofs but it frequently leads one in the right direction,
and technically correct proofs can then hopefully be found. This is the case with
Witten's work. So far his insight has never let him down and rigorous proofs, of
the standard we mathematicians rightly expect, have always been forthcoming.
There is therefore no doubt that contributions to mathematics of this order are
fully worthy of a Fields Medal.








share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited yesterday

























answered yesterday









Francesco PolizziFrancesco Polizzi

48.3k3129211




48.3k3129211







  • 4




    $begingroup$
    I have read it and do not doubt Witten's contributions to physics or to mathematics: I was asking specifically about the proof of the positive mass theorem which was given as the official reason on the citation.
    $endgroup$
    – Tom
    yesterday






  • 1




    $begingroup$
    The proof of positive mass theorem is treated in Part 3 of the laudatio. It is called a "outline", so actually some technical detail was missing, but the idea was completely correct. That said, I do not know why only that result has been given as official reason for the prize, since the laudatio contains much more.
    $endgroup$
    – Francesco Polizzi
    yesterday










  • $begingroup$
    OK, maybe that was my confusion, as that is literally the only reason given and that has always seemed very strange to me. I'm not saying that his proof of the positive mass theorem was not a very significant achievement.
    $endgroup$
    – Tom
    yesterday










  • $begingroup$
    @Tom : What do you mean by "literally the only reason given"? I don't think that the IMU or the Fields Medal Committee produces a piece of text for each medalist and declares that text, and only that text, to be the "official reason" for awarding the medal. No such "official citations" appear on the IMU website, for example. I suspect that if you ask any former committee member, they will say that the reasons for the choices are complicated, and that any public statement or press release is not intended to be a comprehensive statement of those reasons.
    $endgroup$
    – Timothy Chow
    8 hours ago













  • 4




    $begingroup$
    I have read it and do not doubt Witten's contributions to physics or to mathematics: I was asking specifically about the proof of the positive mass theorem which was given as the official reason on the citation.
    $endgroup$
    – Tom
    yesterday






  • 1




    $begingroup$
    The proof of positive mass theorem is treated in Part 3 of the laudatio. It is called a "outline", so actually some technical detail was missing, but the idea was completely correct. That said, I do not know why only that result has been given as official reason for the prize, since the laudatio contains much more.
    $endgroup$
    – Francesco Polizzi
    yesterday










  • $begingroup$
    OK, maybe that was my confusion, as that is literally the only reason given and that has always seemed very strange to me. I'm not saying that his proof of the positive mass theorem was not a very significant achievement.
    $endgroup$
    – Tom
    yesterday










  • $begingroup$
    @Tom : What do you mean by "literally the only reason given"? I don't think that the IMU or the Fields Medal Committee produces a piece of text for each medalist and declares that text, and only that text, to be the "official reason" for awarding the medal. No such "official citations" appear on the IMU website, for example. I suspect that if you ask any former committee member, they will say that the reasons for the choices are complicated, and that any public statement or press release is not intended to be a comprehensive statement of those reasons.
    $endgroup$
    – Timothy Chow
    8 hours ago








4




4




$begingroup$
I have read it and do not doubt Witten's contributions to physics or to mathematics: I was asking specifically about the proof of the positive mass theorem which was given as the official reason on the citation.
$endgroup$
– Tom
yesterday




$begingroup$
I have read it and do not doubt Witten's contributions to physics or to mathematics: I was asking specifically about the proof of the positive mass theorem which was given as the official reason on the citation.
$endgroup$
– Tom
yesterday




1




1




$begingroup$
The proof of positive mass theorem is treated in Part 3 of the laudatio. It is called a "outline", so actually some technical detail was missing, but the idea was completely correct. That said, I do not know why only that result has been given as official reason for the prize, since the laudatio contains much more.
$endgroup$
– Francesco Polizzi
yesterday




$begingroup$
The proof of positive mass theorem is treated in Part 3 of the laudatio. It is called a "outline", so actually some technical detail was missing, but the idea was completely correct. That said, I do not know why only that result has been given as official reason for the prize, since the laudatio contains much more.
$endgroup$
– Francesco Polizzi
yesterday












$begingroup$
OK, maybe that was my confusion, as that is literally the only reason given and that has always seemed very strange to me. I'm not saying that his proof of the positive mass theorem was not a very significant achievement.
$endgroup$
– Tom
yesterday




$begingroup$
OK, maybe that was my confusion, as that is literally the only reason given and that has always seemed very strange to me. I'm not saying that his proof of the positive mass theorem was not a very significant achievement.
$endgroup$
– Tom
yesterday












$begingroup$
@Tom : What do you mean by "literally the only reason given"? I don't think that the IMU or the Fields Medal Committee produces a piece of text for each medalist and declares that text, and only that text, to be the "official reason" for awarding the medal. No such "official citations" appear on the IMU website, for example. I suspect that if you ask any former committee member, they will say that the reasons for the choices are complicated, and that any public statement or press release is not intended to be a comprehensive statement of those reasons.
$endgroup$
– Timothy Chow
8 hours ago





$begingroup$
@Tom : What do you mean by "literally the only reason given"? I don't think that the IMU or the Fields Medal Committee produces a piece of text for each medalist and declares that text, and only that text, to be the "official reason" for awarding the medal. No such "official citations" appear on the IMU website, for example. I suspect that if you ask any former committee member, they will say that the reasons for the choices are complicated, and that any public statement or press release is not intended to be a comprehensive statement of those reasons.
$endgroup$
– Timothy Chow
8 hours ago


















draft saved

draft discarded
















































Thanks for contributing an answer to MathOverflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326116%2fis-wittens-proof-of-the-positive-mass-theorem-rigorous%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

getting Checkpoint VPN SSL Network Extender working in the command lineHow to connect to CheckPoint VPN on Ubuntu 18.04LTS?Will the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayVPN SSL Network Extender in FirefoxLinux Checkpoint SNX tool configuration issuesCheck Point - Connect under Linux - snx + OTPSNX VPN Ububuntu 18.XXUsing Checkpoint VPN SSL Network Extender CLI with certificateVPN with network manager (nm-applet) is not workingWill the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayImport VPN config files to NetworkManager from command lineTrouble connecting to VPN using network-manager, while command line worksStart a VPN connection with PPTP protocol on command linestarting a docker service daemon breaks the vpn networkCan't connect to vpn with Network-managerVPN SSL Network Extender in FirefoxUsing Checkpoint VPN SSL Network Extender CLI with certificate

Cannot Extend partition with GParted The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Community Moderator Election ResultsCan't increase partition size with GParted?GParted doesn't recognize the unallocated space after my current partitionWhat is the best way to add unallocated space located before to Ubuntu 12.04 partition with GParted live?I can't figure out how to extend my Arch home partition into free spaceGparted Linux Mint 18.1 issueTrying to extend but swap partition is showing as Unknown in Gparted, shows proper from fdiskRearrange partitions in gparted to extend a partitionUnable to extend partition even though unallocated space is next to it using GPartedAllocate free space to root partitiongparted: how to merge unallocated space with a partition

Marilyn Monroe Ny fiainany manokana | Jereo koa | Meny fitetezanafanitarana azy.