When to use the root test. Is this not a good situation to use it? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Which test would be appropriate to use on this series to show convergence/divergence?Integral test vs root test vs ratio testHow to show convergence or divergence of a series when the ratio test is inconclusive?Root test with nested power function?Confused about using alternating test, ratio test, and root test (please help).Radius and interval of convergence of $sum_n=1^infty(-1)^nfracx^2n(2n)!$ by root and ratio test are different?How would I use root/ratio test on $sum_n=1^inftyleft(fracnn+1right)^n^2$?How would I know when to use what test for convergence?convergence of a sum fails with root testIntuition for Root Test.
Is this wall load bearing? Blueprints and photos attached
Segmentation fault output is suppressed when piping stdin into a function. Why?
What was the last x86 CPU that did not have the x87 floating-point unit built in?
Take groceries in checked luggage
What LEGO pieces have "real-world" functionality?
How do you keep chess fun when your opponent constantly beats you?
Finding the path in a graph from A to B then back to A with a minimum of shared edges
Derivation tree not rendering
Is it ok to offer lower paid work as a trial period before negotiating for a full-time job?
Hiding Certain Lines on Table
Is above average number of years spent on PhD considered a red flag in future academia or industry positions?
How to politely respond to generic emails requesting a PhD/job in my lab? Without wasting too much time
Road tyres vs "Street" tyres for charity ride on MTB Tandem
Simulating Exploding Dice
Problems with Ubuntu mount /tmp
Keeping a retro style to sci-fi spaceships?
Sort a list of pairs representing an acyclic, partial automorphism
What information about me do stores get via my credit card?
How to delete random line from file using Unix command?
How did passengers keep warm on sail ships?
Typeface like Times New Roman but with "tied" percent sign
What do you call a plan that's an alternative plan in case your initial plan fails?
When did F become S in typeography, and why?
Semisimplicity of the category of coherent sheaves?
When to use the root test. Is this not a good situation to use it?
The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Which test would be appropriate to use on this series to show convergence/divergence?Integral test vs root test vs ratio testHow to show convergence or divergence of a series when the ratio test is inconclusive?Root test with nested power function?Confused about using alternating test, ratio test, and root test (please help).Radius and interval of convergence of $sum_n=1^infty(-1)^nfracx^2n(2n)!$ by root and ratio test are different?How would I use root/ratio test on $sum_n=1^inftyleft(fracnn+1right)^n^2$?How would I know when to use what test for convergence?convergence of a sum fails with root testIntuition for Root Test.
$begingroup$
I'm having trouble seeing when to use the root test. nth powers occur, but I think the ratio test is easier:
Here is the problem:
$$sum_n=1^infty fracx^nn^44^n$$
So the ratio test seems to work here, but can't the root test be used to? The problem is that the $n^4$ doesnt play well with the root test right?
Here is the beginning of my solution with the ratio test:
$$biggr lbrack fraca_n+1a_n biggr rbrack = biggr lbrack fracx^n+1(n+1)^4 * 4^n+1 * fracn^4*4^nx^n biggr rbrack = biggr lbrack fracx*n^4(n+1)^4 * 4 biggr rbrack = fracx4$$
So I don't think the explanation for when to use the root test is totally right right? I can't really use it here because the $n^4$ causes some problems with the root test right?
sequences-and-series
$endgroup$
add a comment |
$begingroup$
I'm having trouble seeing when to use the root test. nth powers occur, but I think the ratio test is easier:
Here is the problem:
$$sum_n=1^infty fracx^nn^44^n$$
So the ratio test seems to work here, but can't the root test be used to? The problem is that the $n^4$ doesnt play well with the root test right?
Here is the beginning of my solution with the ratio test:
$$biggr lbrack fraca_n+1a_n biggr rbrack = biggr lbrack fracx^n+1(n+1)^4 * 4^n+1 * fracn^4*4^nx^n biggr rbrack = biggr lbrack fracx*n^4(n+1)^4 * 4 biggr rbrack = fracx4$$
So I don't think the explanation for when to use the root test is totally right right? I can't really use it here because the $n^4$ causes some problems with the root test right?
sequences-and-series
$endgroup$
add a comment |
$begingroup$
I'm having trouble seeing when to use the root test. nth powers occur, but I think the ratio test is easier:
Here is the problem:
$$sum_n=1^infty fracx^nn^44^n$$
So the ratio test seems to work here, but can't the root test be used to? The problem is that the $n^4$ doesnt play well with the root test right?
Here is the beginning of my solution with the ratio test:
$$biggr lbrack fraca_n+1a_n biggr rbrack = biggr lbrack fracx^n+1(n+1)^4 * 4^n+1 * fracn^4*4^nx^n biggr rbrack = biggr lbrack fracx*n^4(n+1)^4 * 4 biggr rbrack = fracx4$$
So I don't think the explanation for when to use the root test is totally right right? I can't really use it here because the $n^4$ causes some problems with the root test right?
sequences-and-series
$endgroup$
I'm having trouble seeing when to use the root test. nth powers occur, but I think the ratio test is easier:
Here is the problem:
$$sum_n=1^infty fracx^nn^44^n$$
So the ratio test seems to work here, but can't the root test be used to? The problem is that the $n^4$ doesnt play well with the root test right?
Here is the beginning of my solution with the ratio test:
$$biggr lbrack fraca_n+1a_n biggr rbrack = biggr lbrack fracx^n+1(n+1)^4 * 4^n+1 * fracn^4*4^nx^n biggr rbrack = biggr lbrack fracx*n^4(n+1)^4 * 4 biggr rbrack = fracx4$$
So I don't think the explanation for when to use the root test is totally right right? I can't really use it here because the $n^4$ causes some problems with the root test right?
sequences-and-series
sequences-and-series
asked Apr 10 at 2:43
Jwan622Jwan622
2,39011632
2,39011632
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
When doing a root test,
powers of $n$ can be ignored
because,
for any fixed $k$,
$lim_n to infty (n^k)^1/n
=1
$.
This is because
$ (n^k)^1/n
=n^k/n
=e^k ln(n)/n
$
and
$lim_n to infty fracln(n)n
=0$.
An easy,
but nonelementary proof of this is this:
$beginarray\
ln(n)
&=int_1^n dfracdtt\
&<int_1^n dfracdtt^1/2\
&=2t^1/2|_1^n\
< 2sqrtn\
textso\
dfracln(n)n
&<dfrac2sqrtn\
endarray
$
Therefore
$ (n^k)^1/n
=n^k/n
=e^k ln(n)/n
lt e^2k/sqrtn
to 1
$.
$endgroup$
add a comment |
$begingroup$
It doesn't cause any problems, because $lim_ntoinftysqrt[n]n^4=1.$ Actually, the root test is stronger than the ratio test. Sometimes the root test limit exists, but the ratio test limit does not. However, if they both exist, then they are equal. Which is why if one limit is $1$ you shouldn't try the other, even though the root test is stronger.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181802%2fwhen-to-use-the-root-test-is-this-not-a-good-situation-to-use-it%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
When doing a root test,
powers of $n$ can be ignored
because,
for any fixed $k$,
$lim_n to infty (n^k)^1/n
=1
$.
This is because
$ (n^k)^1/n
=n^k/n
=e^k ln(n)/n
$
and
$lim_n to infty fracln(n)n
=0$.
An easy,
but nonelementary proof of this is this:
$beginarray\
ln(n)
&=int_1^n dfracdtt\
&<int_1^n dfracdtt^1/2\
&=2t^1/2|_1^n\
< 2sqrtn\
textso\
dfracln(n)n
&<dfrac2sqrtn\
endarray
$
Therefore
$ (n^k)^1/n
=n^k/n
=e^k ln(n)/n
lt e^2k/sqrtn
to 1
$.
$endgroup$
add a comment |
$begingroup$
When doing a root test,
powers of $n$ can be ignored
because,
for any fixed $k$,
$lim_n to infty (n^k)^1/n
=1
$.
This is because
$ (n^k)^1/n
=n^k/n
=e^k ln(n)/n
$
and
$lim_n to infty fracln(n)n
=0$.
An easy,
but nonelementary proof of this is this:
$beginarray\
ln(n)
&=int_1^n dfracdtt\
&<int_1^n dfracdtt^1/2\
&=2t^1/2|_1^n\
< 2sqrtn\
textso\
dfracln(n)n
&<dfrac2sqrtn\
endarray
$
Therefore
$ (n^k)^1/n
=n^k/n
=e^k ln(n)/n
lt e^2k/sqrtn
to 1
$.
$endgroup$
add a comment |
$begingroup$
When doing a root test,
powers of $n$ can be ignored
because,
for any fixed $k$,
$lim_n to infty (n^k)^1/n
=1
$.
This is because
$ (n^k)^1/n
=n^k/n
=e^k ln(n)/n
$
and
$lim_n to infty fracln(n)n
=0$.
An easy,
but nonelementary proof of this is this:
$beginarray\
ln(n)
&=int_1^n dfracdtt\
&<int_1^n dfracdtt^1/2\
&=2t^1/2|_1^n\
< 2sqrtn\
textso\
dfracln(n)n
&<dfrac2sqrtn\
endarray
$
Therefore
$ (n^k)^1/n
=n^k/n
=e^k ln(n)/n
lt e^2k/sqrtn
to 1
$.
$endgroup$
When doing a root test,
powers of $n$ can be ignored
because,
for any fixed $k$,
$lim_n to infty (n^k)^1/n
=1
$.
This is because
$ (n^k)^1/n
=n^k/n
=e^k ln(n)/n
$
and
$lim_n to infty fracln(n)n
=0$.
An easy,
but nonelementary proof of this is this:
$beginarray\
ln(n)
&=int_1^n dfracdtt\
&<int_1^n dfracdtt^1/2\
&=2t^1/2|_1^n\
< 2sqrtn\
textso\
dfracln(n)n
&<dfrac2sqrtn\
endarray
$
Therefore
$ (n^k)^1/n
=n^k/n
=e^k ln(n)/n
lt e^2k/sqrtn
to 1
$.
answered Apr 10 at 3:32
marty cohenmarty cohen
75.5k549130
75.5k549130
add a comment |
add a comment |
$begingroup$
It doesn't cause any problems, because $lim_ntoinftysqrt[n]n^4=1.$ Actually, the root test is stronger than the ratio test. Sometimes the root test limit exists, but the ratio test limit does not. However, if they both exist, then they are equal. Which is why if one limit is $1$ you shouldn't try the other, even though the root test is stronger.
$endgroup$
add a comment |
$begingroup$
It doesn't cause any problems, because $lim_ntoinftysqrt[n]n^4=1.$ Actually, the root test is stronger than the ratio test. Sometimes the root test limit exists, but the ratio test limit does not. However, if they both exist, then they are equal. Which is why if one limit is $1$ you shouldn't try the other, even though the root test is stronger.
$endgroup$
add a comment |
$begingroup$
It doesn't cause any problems, because $lim_ntoinftysqrt[n]n^4=1.$ Actually, the root test is stronger than the ratio test. Sometimes the root test limit exists, but the ratio test limit does not. However, if they both exist, then they are equal. Which is why if one limit is $1$ you shouldn't try the other, even though the root test is stronger.
$endgroup$
It doesn't cause any problems, because $lim_ntoinftysqrt[n]n^4=1.$ Actually, the root test is stronger than the ratio test. Sometimes the root test limit exists, but the ratio test limit does not. However, if they both exist, then they are equal. Which is why if one limit is $1$ you shouldn't try the other, even though the root test is stronger.
answered Apr 10 at 3:00
MelodyMelody
1,21312
1,21312
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181802%2fwhen-to-use-the-root-test-is-this-not-a-good-situation-to-use-it%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown