Why is my p-value correlated to difference between means in two sample tests? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Is it possible to use a two sample $t$ test here?Mann-Whitney null hypothesis under unequal varianceDoes statistically insignificant difference of means imply equality of means?Evaluating close calls with the Wilcon Sum Rank test two sided vs. one sidedTest for systematic difference between two samplesHow to adjust p-value to reject null hypothesis from sample size in Mann Whitney U test?In distribution tests, why do we assume that any distribution is true unless proven otherwise?Calculating the p-value of two independent counts?Mann–Whitney U test shows there is a difference between two sample sets, how do I know which sample set is better?Two sample t-test to show equality of the two means

Can a 1st-level character have an ability score above 18?

Do warforged have souls?

Windows 10: How to Lock (not sleep) laptop on lid close?

Is above average number of years spent on PhD considered a red flag in future academia or industry positions?

He got a vote 80% that of Emmanuel Macron’s

Does Parliament need to approve the new Brexit delay to 31 October 2019?

How are presidential pardons supposed to be used?

Relations between two reciprocal partial derivatives?

Python - Fishing Simulator

How did the audience guess the pentatonic scale in Bobby McFerrin's presentation?

Segmentation fault output is suppressed when piping stdin into a function. Why?

Who or what is the being for whom Being is a question for Heidegger?

How does this infinite series simplify to an integral?

Would an alien lifeform be able to achieve space travel if lacking in vision?

How to remove this toilet supply line that seems to have no nut?

When did F become S in typeography, and why?

How to test the equality of two Pearson correlation coefficients computed from the same sample?

What's the point in a preamp?

How can I protect witches in combat who wear limited clothing?

Why did all the guest students take carriages to the Yule Ball?

Difference between "generating set" and free product?

Wall plug outlet change

How to pronounce 1ターン?

How can I define good in a religion that claims no moral authority?



Why is my p-value correlated to difference between means in two sample tests?



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Is it possible to use a two sample $t$ test here?Mann-Whitney null hypothesis under unequal varianceDoes statistically insignificant difference of means imply equality of means?Evaluating close calls with the Wilcon Sum Rank test two sided vs. one sidedTest for systematic difference between two samplesHow to adjust p-value to reject null hypothesis from sample size in Mann Whitney U test?In distribution tests, why do we assume that any distribution is true unless proven otherwise?Calculating the p-value of two independent counts?Mann–Whitney U test shows there is a difference between two sample sets, how do I know which sample set is better?Two sample t-test to show equality of the two means



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








4












$begingroup$


A colleague has recently made the claim that a large p-value was not more support for the null hypothesis than a low one. Of course, this is also what I learned (uniform distribution under the null hypothesis, we can only reject the null hypothesis...). But when I simulate two random normal distributions (100 samples in each group) in R, my p-value is correlated to the difference (averaged over 30 repetitions) between the two means (with for example a T test or a Mann & Whitney test).



Why is my p-value, above the threshold of 0.05, correlated to the difference between the means of my two groups?



enter image description here



With 1000 repetitions for each x (difference between means/2) value.
enter image description here



My R code in case this is just a silly mistake.



pvaluetot<-NULL
xtot<-NULL
seqx<-seq(0,5,0.01)
for (x in seqx)
ptemp<-NULL
pmean<-NULL
a<-0

repeat
a<-a+1
pop1<-rnorm(100,0+x,2)
pop2<-rnorm(100,0-x,2)
pvalue<-t.test(pop1,pop2)$p.value

ptemp<-c(ptemp,pvalue)
#print(ptemp)
if (a==30)
break


pmean<-mean(ptemp)
pvaluetot<-c(pvaluetot,pmean)
xtot<-c(xtot,x)
print(x)


pvaluetot
xtot
plot(pvaluetot,xtot)









share|cite|improve this question











$endgroup$


















    4












    $begingroup$


    A colleague has recently made the claim that a large p-value was not more support for the null hypothesis than a low one. Of course, this is also what I learned (uniform distribution under the null hypothesis, we can only reject the null hypothesis...). But when I simulate two random normal distributions (100 samples in each group) in R, my p-value is correlated to the difference (averaged over 30 repetitions) between the two means (with for example a T test or a Mann & Whitney test).



    Why is my p-value, above the threshold of 0.05, correlated to the difference between the means of my two groups?



    enter image description here



    With 1000 repetitions for each x (difference between means/2) value.
    enter image description here



    My R code in case this is just a silly mistake.



    pvaluetot<-NULL
    xtot<-NULL
    seqx<-seq(0,5,0.01)
    for (x in seqx)
    ptemp<-NULL
    pmean<-NULL
    a<-0

    repeat
    a<-a+1
    pop1<-rnorm(100,0+x,2)
    pop2<-rnorm(100,0-x,2)
    pvalue<-t.test(pop1,pop2)$p.value

    ptemp<-c(ptemp,pvalue)
    #print(ptemp)
    if (a==30)
    break


    pmean<-mean(ptemp)
    pvaluetot<-c(pvaluetot,pmean)
    xtot<-c(xtot,x)
    print(x)


    pvaluetot
    xtot
    plot(pvaluetot,xtot)









    share|cite|improve this question











    $endgroup$














      4












      4








      4


      0



      $begingroup$


      A colleague has recently made the claim that a large p-value was not more support for the null hypothesis than a low one. Of course, this is also what I learned (uniform distribution under the null hypothesis, we can only reject the null hypothesis...). But when I simulate two random normal distributions (100 samples in each group) in R, my p-value is correlated to the difference (averaged over 30 repetitions) between the two means (with for example a T test or a Mann & Whitney test).



      Why is my p-value, above the threshold of 0.05, correlated to the difference between the means of my two groups?



      enter image description here



      With 1000 repetitions for each x (difference between means/2) value.
      enter image description here



      My R code in case this is just a silly mistake.



      pvaluetot<-NULL
      xtot<-NULL
      seqx<-seq(0,5,0.01)
      for (x in seqx)
      ptemp<-NULL
      pmean<-NULL
      a<-0

      repeat
      a<-a+1
      pop1<-rnorm(100,0+x,2)
      pop2<-rnorm(100,0-x,2)
      pvalue<-t.test(pop1,pop2)$p.value

      ptemp<-c(ptemp,pvalue)
      #print(ptemp)
      if (a==30)
      break


      pmean<-mean(ptemp)
      pvaluetot<-c(pvaluetot,pmean)
      xtot<-c(xtot,x)
      print(x)


      pvaluetot
      xtot
      plot(pvaluetot,xtot)









      share|cite|improve this question











      $endgroup$




      A colleague has recently made the claim that a large p-value was not more support for the null hypothesis than a low one. Of course, this is also what I learned (uniform distribution under the null hypothesis, we can only reject the null hypothesis...). But when I simulate two random normal distributions (100 samples in each group) in R, my p-value is correlated to the difference (averaged over 30 repetitions) between the two means (with for example a T test or a Mann & Whitney test).



      Why is my p-value, above the threshold of 0.05, correlated to the difference between the means of my two groups?



      enter image description here



      With 1000 repetitions for each x (difference between means/2) value.
      enter image description here



      My R code in case this is just a silly mistake.



      pvaluetot<-NULL
      xtot<-NULL
      seqx<-seq(0,5,0.01)
      for (x in seqx)
      ptemp<-NULL
      pmean<-NULL
      a<-0

      repeat
      a<-a+1
      pop1<-rnorm(100,0+x,2)
      pop2<-rnorm(100,0-x,2)
      pvalue<-t.test(pop1,pop2)$p.value

      ptemp<-c(ptemp,pvalue)
      #print(ptemp)
      if (a==30)
      break


      pmean<-mean(ptemp)
      pvaluetot<-c(pvaluetot,pmean)
      xtot<-c(xtot,x)
      print(x)


      pvaluetot
      xtot
      plot(pvaluetot,xtot)






      hypothesis-testing statistical-significance p-value effect-size






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Apr 10 at 1:05







      Nakx

















      asked Apr 10 at 0:35









      NakxNakx

      334116




      334116




















          3 Answers
          3






          active

          oldest

          votes


















          4












          $begingroup$

          As you said, the p-value is uniformly distributed under the null hypothesis. That is, if the null hypothesis is really true, then upon repeated experiments we expect to find a fully random, flat distribution of p-values between [0, 1]. Consequently, a frequentist p-value says nothing about how likely the null hypothesis is to be true, since any p-value is equally probable under the null.



          What you're looking at is the distribution of p-values under an alternative hypothesis. Depending on the formulation of this hypothesis, the resulting p-values can have any non-Uniform, positively skewed distribution between [0, 1]. But this doesn't tell you anything about the probability of the null. The reason is that the p-value expresses the probability of the evidence under the null hypothesis, i.e. $p(D|H_0)$, whereas you want to know $p(H_0|D)$. These two are related by Bayes' rule:
          $$
          p(H_0|D) = fracp(DH_0)p(H_0)+p(D
          $$

          This means that in order to calculate the probability you're interested in, you need to know and take into account the prior probability of the null being true ($p(H_0)$), the prior probability of the null being false ($p(neg H_0)$) and the probability of the data given that the null is false ($p(D|neg H_0)$). This is the purview of Bayesian, rather than frequentist statistics.



          As for the correlation you observed: as I said above the p-values will be positively skewed under the alternative hypothesis. How skewed depends what that alternative hypothesis is. In the case of a two-sample t-test, the more you increase the difference between your population means, the more skewed the p-values will become. This reflects the fact that you're making your samples increasingly more different from what is plausible under the null, and so by definition the resulting p-values (reflecting the probability of the data under the null) must decrease.






          share|cite|improve this answer









          $endgroup$




















            5












            $begingroup$

            Why would you expect anything else? You don't need a simulation to know this is going to happen. Look at the formula for the t-statistic:
            $t = fracbarx_1 - barx_2 sqrt fracs^2_1n_1 + fracs^2_2n_2 $



            Obviously if you increase the true difference of means you expect $barx_1 - barx_2$ will be larger. You are holding the variance and sample size constant, so the t-statistic must be larger and thus the p-value smaller.



            I think you are confusing a philosophical rule about hypothesis testing with a mathematical fact. If the null hypothesis is true, you would expect a higher p-value. This has to be true in order for hypothesis testing to make any sense.






            share|cite|improve this answer









            $endgroup$




















              2












              $begingroup$



              You should indeed not interpret the p-value as a probability that the null hypothesis is true.



              However, a higher p-value does relate to stronger support for the null hypothesis.




              Considering p-values as a random variable



              You could consider p-values as a transformation of your statistic. See for instance the secondary x-axis in the graph below in which the t-distribution is plotted with $nu=99$.



              secondary x-axis



              Here you see that a larger p-value corresponds to a smaller t-statistic (and also, for a two-sided test, there are two t-statistic associated with one p-value).



              Distribution of p-values $P(textp-value|mu_1-mu_2)$



              When we plot the distribution density of the p-values, parameterized by $mu_1-mu_2$, you see that higher p-values are less likely for $mu_1-mu_2 neq 0$.



              distribution of p-values



              # compute CDF for a given observed p-value and parameter ncp=mu_1-mu_2
              qp <- function(p,ncp)
              from_p_to_t <- qt(1-p/2,99) # transform from p-value to t-statistic
              1-pt(from_p_to_t,99,ncp=ncp) + pt(-from_p_to_t,99,ncp=ncp) # compute CDF for t-statistic (two-sided)

              qp <- Vectorize(qp)

              # plotting density function
              p <- seq(0,1,0.001)
              plot(-1,-1,
              xlim=c(0,1), ylim=c(0,9),
              xlab = "p-value", ylab = "probability density")

              # use difference between CDF to plot PDF
              lines(p[-1]-0.001/2,(qp(p,0)[-1]-qp(p,0)[-1001])/0.001,type="l")
              lines(p[-1]-0.001/2,(qp(p,1)[-1]-qp(p,1)[-1001])/0.001,type="l", lty=2)
              lines(p[-1]-0.001/2,(qp(p,2)[-1]-qp(p,2)[-1001])/0.001,type="l", lty=3)


              The bayes factor, the ratio of the likelihood for different hypotheses is larger for larger p-values. And you could consider higher p-values as stronger support. Depending on the alternative hypothesis this strong support is reached at different p-values. The more extreme the alternative hypothesis, or the larger the sample of the test, the smaller the p-value needs to be in order to be strong support.



              bayes-factor




              Illustration



              See below an example with simulations for two different situations. You sample $X sim N(mu_1,2)$ and $X sim N(mu_2,2)$ Let in one case




              • $mu_i sim N(i,1)$ such that $mu_2-mu_1 sim N(1,sqrt2)$

              the other case




              • $mu_i sim N(0,1)$ such that $mu_2-mu_1 sim
                N(0,sqrt2)$
                .

              simulation



              In the first case you can see that the probability for $mu_1-mu_2$ is most likely to be around 1, also for higher p-values. This is because the marginal probability $mu_1-mu_2 sim N(1,sqrt2)$ is already close to 1 to start with. So a high p-value will be support for the hypothesis $mu_1-mu_2$ but is is not strong enough.



              In the second case you can see that $mu_1-mu_2$ is indeed most likely to be around zero when the p-value is large. So, you could consider it as some sort of support for the null hypothesis.



              So in any of the cases a high p-value is support for the null hypothesis. But, it should not be considered as the probability that the hypothesis is true. This probability needs to be considered case by case. You can evaluate it when you know the joint distribution of the mean and the p-value (that is, you know something like a prior probability for the distribution of the mean).



              Sidenote: When you use the p-value in this way, to indicate support for the null hypothesis, then you are actually not using this value in the way that is was intended for. Then you may better just report the t-statistic and present something like a plot of a likelihood function (or bayes factor).






              share|cite|improve this answer











              $endgroup$













                Your Answer








                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "65"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: false,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: null,
                bindNavPrevention: true,
                postfix: "",
                imageUploader:
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                ,
                onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );













                draft saved

                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f402138%2fwhy-is-my-p-value-correlated-to-difference-between-means-in-two-sample-tests%23new-answer', 'question_page');

                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                4












                $begingroup$

                As you said, the p-value is uniformly distributed under the null hypothesis. That is, if the null hypothesis is really true, then upon repeated experiments we expect to find a fully random, flat distribution of p-values between [0, 1]. Consequently, a frequentist p-value says nothing about how likely the null hypothesis is to be true, since any p-value is equally probable under the null.



                What you're looking at is the distribution of p-values under an alternative hypothesis. Depending on the formulation of this hypothesis, the resulting p-values can have any non-Uniform, positively skewed distribution between [0, 1]. But this doesn't tell you anything about the probability of the null. The reason is that the p-value expresses the probability of the evidence under the null hypothesis, i.e. $p(D|H_0)$, whereas you want to know $p(H_0|D)$. These two are related by Bayes' rule:
                $$
                p(H_0|D) = fracp(DH_0)p(H_0)+p(D
                $$

                This means that in order to calculate the probability you're interested in, you need to know and take into account the prior probability of the null being true ($p(H_0)$), the prior probability of the null being false ($p(neg H_0)$) and the probability of the data given that the null is false ($p(D|neg H_0)$). This is the purview of Bayesian, rather than frequentist statistics.



                As for the correlation you observed: as I said above the p-values will be positively skewed under the alternative hypothesis. How skewed depends what that alternative hypothesis is. In the case of a two-sample t-test, the more you increase the difference between your population means, the more skewed the p-values will become. This reflects the fact that you're making your samples increasingly more different from what is plausible under the null, and so by definition the resulting p-values (reflecting the probability of the data under the null) must decrease.






                share|cite|improve this answer









                $endgroup$

















                  4












                  $begingroup$

                  As you said, the p-value is uniformly distributed under the null hypothesis. That is, if the null hypothesis is really true, then upon repeated experiments we expect to find a fully random, flat distribution of p-values between [0, 1]. Consequently, a frequentist p-value says nothing about how likely the null hypothesis is to be true, since any p-value is equally probable under the null.



                  What you're looking at is the distribution of p-values under an alternative hypothesis. Depending on the formulation of this hypothesis, the resulting p-values can have any non-Uniform, positively skewed distribution between [0, 1]. But this doesn't tell you anything about the probability of the null. The reason is that the p-value expresses the probability of the evidence under the null hypothesis, i.e. $p(D|H_0)$, whereas you want to know $p(H_0|D)$. These two are related by Bayes' rule:
                  $$
                  p(H_0|D) = fracp(DH_0)p(H_0)+p(D
                  $$

                  This means that in order to calculate the probability you're interested in, you need to know and take into account the prior probability of the null being true ($p(H_0)$), the prior probability of the null being false ($p(neg H_0)$) and the probability of the data given that the null is false ($p(D|neg H_0)$). This is the purview of Bayesian, rather than frequentist statistics.



                  As for the correlation you observed: as I said above the p-values will be positively skewed under the alternative hypothesis. How skewed depends what that alternative hypothesis is. In the case of a two-sample t-test, the more you increase the difference between your population means, the more skewed the p-values will become. This reflects the fact that you're making your samples increasingly more different from what is plausible under the null, and so by definition the resulting p-values (reflecting the probability of the data under the null) must decrease.






                  share|cite|improve this answer









                  $endgroup$















                    4












                    4








                    4





                    $begingroup$

                    As you said, the p-value is uniformly distributed under the null hypothesis. That is, if the null hypothesis is really true, then upon repeated experiments we expect to find a fully random, flat distribution of p-values between [0, 1]. Consequently, a frequentist p-value says nothing about how likely the null hypothesis is to be true, since any p-value is equally probable under the null.



                    What you're looking at is the distribution of p-values under an alternative hypothesis. Depending on the formulation of this hypothesis, the resulting p-values can have any non-Uniform, positively skewed distribution between [0, 1]. But this doesn't tell you anything about the probability of the null. The reason is that the p-value expresses the probability of the evidence under the null hypothesis, i.e. $p(D|H_0)$, whereas you want to know $p(H_0|D)$. These two are related by Bayes' rule:
                    $$
                    p(H_0|D) = fracp(DH_0)p(H_0)+p(D
                    $$

                    This means that in order to calculate the probability you're interested in, you need to know and take into account the prior probability of the null being true ($p(H_0)$), the prior probability of the null being false ($p(neg H_0)$) and the probability of the data given that the null is false ($p(D|neg H_0)$). This is the purview of Bayesian, rather than frequentist statistics.



                    As for the correlation you observed: as I said above the p-values will be positively skewed under the alternative hypothesis. How skewed depends what that alternative hypothesis is. In the case of a two-sample t-test, the more you increase the difference between your population means, the more skewed the p-values will become. This reflects the fact that you're making your samples increasingly more different from what is plausible under the null, and so by definition the resulting p-values (reflecting the probability of the data under the null) must decrease.






                    share|cite|improve this answer









                    $endgroup$



                    As you said, the p-value is uniformly distributed under the null hypothesis. That is, if the null hypothesis is really true, then upon repeated experiments we expect to find a fully random, flat distribution of p-values between [0, 1]. Consequently, a frequentist p-value says nothing about how likely the null hypothesis is to be true, since any p-value is equally probable under the null.



                    What you're looking at is the distribution of p-values under an alternative hypothesis. Depending on the formulation of this hypothesis, the resulting p-values can have any non-Uniform, positively skewed distribution between [0, 1]. But this doesn't tell you anything about the probability of the null. The reason is that the p-value expresses the probability of the evidence under the null hypothesis, i.e. $p(D|H_0)$, whereas you want to know $p(H_0|D)$. These two are related by Bayes' rule:
                    $$
                    p(H_0|D) = fracp(DH_0)p(H_0)+p(D
                    $$

                    This means that in order to calculate the probability you're interested in, you need to know and take into account the prior probability of the null being true ($p(H_0)$), the prior probability of the null being false ($p(neg H_0)$) and the probability of the data given that the null is false ($p(D|neg H_0)$). This is the purview of Bayesian, rather than frequentist statistics.



                    As for the correlation you observed: as I said above the p-values will be positively skewed under the alternative hypothesis. How skewed depends what that alternative hypothesis is. In the case of a two-sample t-test, the more you increase the difference between your population means, the more skewed the p-values will become. This reflects the fact that you're making your samples increasingly more different from what is plausible under the null, and so by definition the resulting p-values (reflecting the probability of the data under the null) must decrease.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Apr 10 at 2:18









                    Ruben van BergenRuben van Bergen

                    4,1791925




                    4,1791925























                        5












                        $begingroup$

                        Why would you expect anything else? You don't need a simulation to know this is going to happen. Look at the formula for the t-statistic:
                        $t = fracbarx_1 - barx_2 sqrt fracs^2_1n_1 + fracs^2_2n_2 $



                        Obviously if you increase the true difference of means you expect $barx_1 - barx_2$ will be larger. You are holding the variance and sample size constant, so the t-statistic must be larger and thus the p-value smaller.



                        I think you are confusing a philosophical rule about hypothesis testing with a mathematical fact. If the null hypothesis is true, you would expect a higher p-value. This has to be true in order for hypothesis testing to make any sense.






                        share|cite|improve this answer









                        $endgroup$

















                          5












                          $begingroup$

                          Why would you expect anything else? You don't need a simulation to know this is going to happen. Look at the formula for the t-statistic:
                          $t = fracbarx_1 - barx_2 sqrt fracs^2_1n_1 + fracs^2_2n_2 $



                          Obviously if you increase the true difference of means you expect $barx_1 - barx_2$ will be larger. You are holding the variance and sample size constant, so the t-statistic must be larger and thus the p-value smaller.



                          I think you are confusing a philosophical rule about hypothesis testing with a mathematical fact. If the null hypothesis is true, you would expect a higher p-value. This has to be true in order for hypothesis testing to make any sense.






                          share|cite|improve this answer









                          $endgroup$















                            5












                            5








                            5





                            $begingroup$

                            Why would you expect anything else? You don't need a simulation to know this is going to happen. Look at the formula for the t-statistic:
                            $t = fracbarx_1 - barx_2 sqrt fracs^2_1n_1 + fracs^2_2n_2 $



                            Obviously if you increase the true difference of means you expect $barx_1 - barx_2$ will be larger. You are holding the variance and sample size constant, so the t-statistic must be larger and thus the p-value smaller.



                            I think you are confusing a philosophical rule about hypothesis testing with a mathematical fact. If the null hypothesis is true, you would expect a higher p-value. This has to be true in order for hypothesis testing to make any sense.






                            share|cite|improve this answer









                            $endgroup$



                            Why would you expect anything else? You don't need a simulation to know this is going to happen. Look at the formula for the t-statistic:
                            $t = fracbarx_1 - barx_2 sqrt fracs^2_1n_1 + fracs^2_2n_2 $



                            Obviously if you increase the true difference of means you expect $barx_1 - barx_2$ will be larger. You are holding the variance and sample size constant, so the t-statistic must be larger and thus the p-value smaller.



                            I think you are confusing a philosophical rule about hypothesis testing with a mathematical fact. If the null hypothesis is true, you would expect a higher p-value. This has to be true in order for hypothesis testing to make any sense.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Apr 10 at 2:07









                            Matt PMatt P

                            1616




                            1616





















                                2












                                $begingroup$



                                You should indeed not interpret the p-value as a probability that the null hypothesis is true.



                                However, a higher p-value does relate to stronger support for the null hypothesis.




                                Considering p-values as a random variable



                                You could consider p-values as a transformation of your statistic. See for instance the secondary x-axis in the graph below in which the t-distribution is plotted with $nu=99$.



                                secondary x-axis



                                Here you see that a larger p-value corresponds to a smaller t-statistic (and also, for a two-sided test, there are two t-statistic associated with one p-value).



                                Distribution of p-values $P(textp-value|mu_1-mu_2)$



                                When we plot the distribution density of the p-values, parameterized by $mu_1-mu_2$, you see that higher p-values are less likely for $mu_1-mu_2 neq 0$.



                                distribution of p-values



                                # compute CDF for a given observed p-value and parameter ncp=mu_1-mu_2
                                qp <- function(p,ncp)
                                from_p_to_t <- qt(1-p/2,99) # transform from p-value to t-statistic
                                1-pt(from_p_to_t,99,ncp=ncp) + pt(-from_p_to_t,99,ncp=ncp) # compute CDF for t-statistic (two-sided)

                                qp <- Vectorize(qp)

                                # plotting density function
                                p <- seq(0,1,0.001)
                                plot(-1,-1,
                                xlim=c(0,1), ylim=c(0,9),
                                xlab = "p-value", ylab = "probability density")

                                # use difference between CDF to plot PDF
                                lines(p[-1]-0.001/2,(qp(p,0)[-1]-qp(p,0)[-1001])/0.001,type="l")
                                lines(p[-1]-0.001/2,(qp(p,1)[-1]-qp(p,1)[-1001])/0.001,type="l", lty=2)
                                lines(p[-1]-0.001/2,(qp(p,2)[-1]-qp(p,2)[-1001])/0.001,type="l", lty=3)


                                The bayes factor, the ratio of the likelihood for different hypotheses is larger for larger p-values. And you could consider higher p-values as stronger support. Depending on the alternative hypothesis this strong support is reached at different p-values. The more extreme the alternative hypothesis, or the larger the sample of the test, the smaller the p-value needs to be in order to be strong support.



                                bayes-factor




                                Illustration



                                See below an example with simulations for two different situations. You sample $X sim N(mu_1,2)$ and $X sim N(mu_2,2)$ Let in one case




                                • $mu_i sim N(i,1)$ such that $mu_2-mu_1 sim N(1,sqrt2)$

                                the other case




                                • $mu_i sim N(0,1)$ such that $mu_2-mu_1 sim
                                  N(0,sqrt2)$
                                  .

                                simulation



                                In the first case you can see that the probability for $mu_1-mu_2$ is most likely to be around 1, also for higher p-values. This is because the marginal probability $mu_1-mu_2 sim N(1,sqrt2)$ is already close to 1 to start with. So a high p-value will be support for the hypothesis $mu_1-mu_2$ but is is not strong enough.



                                In the second case you can see that $mu_1-mu_2$ is indeed most likely to be around zero when the p-value is large. So, you could consider it as some sort of support for the null hypothesis.



                                So in any of the cases a high p-value is support for the null hypothesis. But, it should not be considered as the probability that the hypothesis is true. This probability needs to be considered case by case. You can evaluate it when you know the joint distribution of the mean and the p-value (that is, you know something like a prior probability for the distribution of the mean).



                                Sidenote: When you use the p-value in this way, to indicate support for the null hypothesis, then you are actually not using this value in the way that is was intended for. Then you may better just report the t-statistic and present something like a plot of a likelihood function (or bayes factor).






                                share|cite|improve this answer











                                $endgroup$

















                                  2












                                  $begingroup$



                                  You should indeed not interpret the p-value as a probability that the null hypothesis is true.



                                  However, a higher p-value does relate to stronger support for the null hypothesis.




                                  Considering p-values as a random variable



                                  You could consider p-values as a transformation of your statistic. See for instance the secondary x-axis in the graph below in which the t-distribution is plotted with $nu=99$.



                                  secondary x-axis



                                  Here you see that a larger p-value corresponds to a smaller t-statistic (and also, for a two-sided test, there are two t-statistic associated with one p-value).



                                  Distribution of p-values $P(textp-value|mu_1-mu_2)$



                                  When we plot the distribution density of the p-values, parameterized by $mu_1-mu_2$, you see that higher p-values are less likely for $mu_1-mu_2 neq 0$.



                                  distribution of p-values



                                  # compute CDF for a given observed p-value and parameter ncp=mu_1-mu_2
                                  qp <- function(p,ncp)
                                  from_p_to_t <- qt(1-p/2,99) # transform from p-value to t-statistic
                                  1-pt(from_p_to_t,99,ncp=ncp) + pt(-from_p_to_t,99,ncp=ncp) # compute CDF for t-statistic (two-sided)

                                  qp <- Vectorize(qp)

                                  # plotting density function
                                  p <- seq(0,1,0.001)
                                  plot(-1,-1,
                                  xlim=c(0,1), ylim=c(0,9),
                                  xlab = "p-value", ylab = "probability density")

                                  # use difference between CDF to plot PDF
                                  lines(p[-1]-0.001/2,(qp(p,0)[-1]-qp(p,0)[-1001])/0.001,type="l")
                                  lines(p[-1]-0.001/2,(qp(p,1)[-1]-qp(p,1)[-1001])/0.001,type="l", lty=2)
                                  lines(p[-1]-0.001/2,(qp(p,2)[-1]-qp(p,2)[-1001])/0.001,type="l", lty=3)


                                  The bayes factor, the ratio of the likelihood for different hypotheses is larger for larger p-values. And you could consider higher p-values as stronger support. Depending on the alternative hypothesis this strong support is reached at different p-values. The more extreme the alternative hypothesis, or the larger the sample of the test, the smaller the p-value needs to be in order to be strong support.



                                  bayes-factor




                                  Illustration



                                  See below an example with simulations for two different situations. You sample $X sim N(mu_1,2)$ and $X sim N(mu_2,2)$ Let in one case




                                  • $mu_i sim N(i,1)$ such that $mu_2-mu_1 sim N(1,sqrt2)$

                                  the other case




                                  • $mu_i sim N(0,1)$ such that $mu_2-mu_1 sim
                                    N(0,sqrt2)$
                                    .

                                  simulation



                                  In the first case you can see that the probability for $mu_1-mu_2$ is most likely to be around 1, also for higher p-values. This is because the marginal probability $mu_1-mu_2 sim N(1,sqrt2)$ is already close to 1 to start with. So a high p-value will be support for the hypothesis $mu_1-mu_2$ but is is not strong enough.



                                  In the second case you can see that $mu_1-mu_2$ is indeed most likely to be around zero when the p-value is large. So, you could consider it as some sort of support for the null hypothesis.



                                  So in any of the cases a high p-value is support for the null hypothesis. But, it should not be considered as the probability that the hypothesis is true. This probability needs to be considered case by case. You can evaluate it when you know the joint distribution of the mean and the p-value (that is, you know something like a prior probability for the distribution of the mean).



                                  Sidenote: When you use the p-value in this way, to indicate support for the null hypothesis, then you are actually not using this value in the way that is was intended for. Then you may better just report the t-statistic and present something like a plot of a likelihood function (or bayes factor).






                                  share|cite|improve this answer











                                  $endgroup$















                                    2












                                    2








                                    2





                                    $begingroup$



                                    You should indeed not interpret the p-value as a probability that the null hypothesis is true.



                                    However, a higher p-value does relate to stronger support for the null hypothesis.




                                    Considering p-values as a random variable



                                    You could consider p-values as a transformation of your statistic. See for instance the secondary x-axis in the graph below in which the t-distribution is plotted with $nu=99$.



                                    secondary x-axis



                                    Here you see that a larger p-value corresponds to a smaller t-statistic (and also, for a two-sided test, there are two t-statistic associated with one p-value).



                                    Distribution of p-values $P(textp-value|mu_1-mu_2)$



                                    When we plot the distribution density of the p-values, parameterized by $mu_1-mu_2$, you see that higher p-values are less likely for $mu_1-mu_2 neq 0$.



                                    distribution of p-values



                                    # compute CDF for a given observed p-value and parameter ncp=mu_1-mu_2
                                    qp <- function(p,ncp)
                                    from_p_to_t <- qt(1-p/2,99) # transform from p-value to t-statistic
                                    1-pt(from_p_to_t,99,ncp=ncp) + pt(-from_p_to_t,99,ncp=ncp) # compute CDF for t-statistic (two-sided)

                                    qp <- Vectorize(qp)

                                    # plotting density function
                                    p <- seq(0,1,0.001)
                                    plot(-1,-1,
                                    xlim=c(0,1), ylim=c(0,9),
                                    xlab = "p-value", ylab = "probability density")

                                    # use difference between CDF to plot PDF
                                    lines(p[-1]-0.001/2,(qp(p,0)[-1]-qp(p,0)[-1001])/0.001,type="l")
                                    lines(p[-1]-0.001/2,(qp(p,1)[-1]-qp(p,1)[-1001])/0.001,type="l", lty=2)
                                    lines(p[-1]-0.001/2,(qp(p,2)[-1]-qp(p,2)[-1001])/0.001,type="l", lty=3)


                                    The bayes factor, the ratio of the likelihood for different hypotheses is larger for larger p-values. And you could consider higher p-values as stronger support. Depending on the alternative hypothesis this strong support is reached at different p-values. The more extreme the alternative hypothesis, or the larger the sample of the test, the smaller the p-value needs to be in order to be strong support.



                                    bayes-factor




                                    Illustration



                                    See below an example with simulations for two different situations. You sample $X sim N(mu_1,2)$ and $X sim N(mu_2,2)$ Let in one case




                                    • $mu_i sim N(i,1)$ such that $mu_2-mu_1 sim N(1,sqrt2)$

                                    the other case




                                    • $mu_i sim N(0,1)$ such that $mu_2-mu_1 sim
                                      N(0,sqrt2)$
                                      .

                                    simulation



                                    In the first case you can see that the probability for $mu_1-mu_2$ is most likely to be around 1, also for higher p-values. This is because the marginal probability $mu_1-mu_2 sim N(1,sqrt2)$ is already close to 1 to start with. So a high p-value will be support for the hypothesis $mu_1-mu_2$ but is is not strong enough.



                                    In the second case you can see that $mu_1-mu_2$ is indeed most likely to be around zero when the p-value is large. So, you could consider it as some sort of support for the null hypothesis.



                                    So in any of the cases a high p-value is support for the null hypothesis. But, it should not be considered as the probability that the hypothesis is true. This probability needs to be considered case by case. You can evaluate it when you know the joint distribution of the mean and the p-value (that is, you know something like a prior probability for the distribution of the mean).



                                    Sidenote: When you use the p-value in this way, to indicate support for the null hypothesis, then you are actually not using this value in the way that is was intended for. Then you may better just report the t-statistic and present something like a plot of a likelihood function (or bayes factor).






                                    share|cite|improve this answer











                                    $endgroup$





                                    You should indeed not interpret the p-value as a probability that the null hypothesis is true.



                                    However, a higher p-value does relate to stronger support for the null hypothesis.




                                    Considering p-values as a random variable



                                    You could consider p-values as a transformation of your statistic. See for instance the secondary x-axis in the graph below in which the t-distribution is plotted with $nu=99$.



                                    secondary x-axis



                                    Here you see that a larger p-value corresponds to a smaller t-statistic (and also, for a two-sided test, there are two t-statistic associated with one p-value).



                                    Distribution of p-values $P(textp-value|mu_1-mu_2)$



                                    When we plot the distribution density of the p-values, parameterized by $mu_1-mu_2$, you see that higher p-values are less likely for $mu_1-mu_2 neq 0$.



                                    distribution of p-values



                                    # compute CDF for a given observed p-value and parameter ncp=mu_1-mu_2
                                    qp <- function(p,ncp)
                                    from_p_to_t <- qt(1-p/2,99) # transform from p-value to t-statistic
                                    1-pt(from_p_to_t,99,ncp=ncp) + pt(-from_p_to_t,99,ncp=ncp) # compute CDF for t-statistic (two-sided)

                                    qp <- Vectorize(qp)

                                    # plotting density function
                                    p <- seq(0,1,0.001)
                                    plot(-1,-1,
                                    xlim=c(0,1), ylim=c(0,9),
                                    xlab = "p-value", ylab = "probability density")

                                    # use difference between CDF to plot PDF
                                    lines(p[-1]-0.001/2,(qp(p,0)[-1]-qp(p,0)[-1001])/0.001,type="l")
                                    lines(p[-1]-0.001/2,(qp(p,1)[-1]-qp(p,1)[-1001])/0.001,type="l", lty=2)
                                    lines(p[-1]-0.001/2,(qp(p,2)[-1]-qp(p,2)[-1001])/0.001,type="l", lty=3)


                                    The bayes factor, the ratio of the likelihood for different hypotheses is larger for larger p-values. And you could consider higher p-values as stronger support. Depending on the alternative hypothesis this strong support is reached at different p-values. The more extreme the alternative hypothesis, or the larger the sample of the test, the smaller the p-value needs to be in order to be strong support.



                                    bayes-factor




                                    Illustration



                                    See below an example with simulations for two different situations. You sample $X sim N(mu_1,2)$ and $X sim N(mu_2,2)$ Let in one case




                                    • $mu_i sim N(i,1)$ such that $mu_2-mu_1 sim N(1,sqrt2)$

                                    the other case




                                    • $mu_i sim N(0,1)$ such that $mu_2-mu_1 sim
                                      N(0,sqrt2)$
                                      .

                                    simulation



                                    In the first case you can see that the probability for $mu_1-mu_2$ is most likely to be around 1, also for higher p-values. This is because the marginal probability $mu_1-mu_2 sim N(1,sqrt2)$ is already close to 1 to start with. So a high p-value will be support for the hypothesis $mu_1-mu_2$ but is is not strong enough.



                                    In the second case you can see that $mu_1-mu_2$ is indeed most likely to be around zero when the p-value is large. So, you could consider it as some sort of support for the null hypothesis.



                                    So in any of the cases a high p-value is support for the null hypothesis. But, it should not be considered as the probability that the hypothesis is true. This probability needs to be considered case by case. You can evaluate it when you know the joint distribution of the mean and the p-value (that is, you know something like a prior probability for the distribution of the mean).



                                    Sidenote: When you use the p-value in this way, to indicate support for the null hypothesis, then you are actually not using this value in the way that is was intended for. Then you may better just report the t-statistic and present something like a plot of a likelihood function (or bayes factor).







                                    share|cite|improve this answer














                                    share|cite|improve this answer



                                    share|cite|improve this answer








                                    edited 2 days ago

























                                    answered 2 days ago









                                    Martijn WeteringsMartijn Weterings

                                    14.8k2064




                                    14.8k2064



























                                        draft saved

                                        draft discarded
















































                                        Thanks for contributing an answer to Cross Validated!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid


                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.

                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f402138%2fwhy-is-my-p-value-correlated-to-difference-between-means-in-two-sample-tests%23new-answer', 'question_page');

                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        getting Checkpoint VPN SSL Network Extender working in the command lineHow to connect to CheckPoint VPN on Ubuntu 18.04LTS?Will the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayVPN SSL Network Extender in FirefoxLinux Checkpoint SNX tool configuration issuesCheck Point - Connect under Linux - snx + OTPSNX VPN Ububuntu 18.XXUsing Checkpoint VPN SSL Network Extender CLI with certificateVPN with network manager (nm-applet) is not workingWill the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayImport VPN config files to NetworkManager from command lineTrouble connecting to VPN using network-manager, while command line worksStart a VPN connection with PPTP protocol on command linestarting a docker service daemon breaks the vpn networkCan't connect to vpn with Network-managerVPN SSL Network Extender in FirefoxUsing Checkpoint VPN SSL Network Extender CLI with certificate

                                        Cannot Extend partition with GParted The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Community Moderator Election ResultsCan't increase partition size with GParted?GParted doesn't recognize the unallocated space after my current partitionWhat is the best way to add unallocated space located before to Ubuntu 12.04 partition with GParted live?I can't figure out how to extend my Arch home partition into free spaceGparted Linux Mint 18.1 issueTrying to extend but swap partition is showing as Unknown in Gparted, shows proper from fdiskRearrange partitions in gparted to extend a partitionUnable to extend partition even though unallocated space is next to it using GPartedAllocate free space to root partitiongparted: how to merge unallocated space with a partition

                                        NetworkManager fails with “Could not find source connection”Trouble connecting to VPN using network-manager, while command line worksHow can I be notified about state changes to a VPN adapterBacktrack 5 R3 - Refuses to connect to VPNFeed all traffic through OpenVPN for a specific network namespace onlyRun daemon on startup in Debian once openvpn connection establishedpfsense tcp connection between openvpn and lan is brokenInternet connection problem with web browsers onlyWhy does NetworkManager explicitly support tun/tap devices?Browser issues with VPNTwo IP addresses assigned to the same network card - OpenVPN issues?Cannot connect to WiFi with nmcli, although secrets are provided