Can a neural network compute $y = x^2$?Debugging Neural Network for (Natural Language) TaggingIs ML a good solution for identifying what the user wants to do from a sentence?Which functions neural net can't approximateQ Learning Neural network for tic tac toe Input implementation problemError in Neural NetworkWhat database should I use?Reinforcement learning - How to deal with varying number of actions which do number approximationMultiple-input multiple-output CNN with custom loss functionWhy are neuron activations stored as a column vector?Learning a highly non-linear function with a small data set

Fear of getting stuck on one programming language / technology that is not used in my country

Should I outline or discovery write my stories?

Offered money to buy a house, seller is asking for more to cover gap between their listing and mortgage owed

Is it improper etiquette to ask your opponent what his/her rating is before the game?

When were female captains banned from Starfleet?

Not using 's' for he/she/it

The screen of my macbook suddenly broken down how can I do to recover

GraphicsGrid with a Label for each Column and Row

It grows, but water kills it

Did Swami Prabhupada reject Advaita?

Why did the EU agree to delay the Brexit deadline?

Why should universal income be universal?

copy and scale one figure (wheel)

Is there a name for this algorithm to calculate the concentration of a mixture of two solutions containing the same solute?

What if a revenant (monster) gains fire resistance?

Is the U.S. Code copyrighted by the Government?

Electoral considerations aside, what are potential benefits, for the US, of policy changes proposed by the tweet recognizing Golan annexation?

What does routing an IP address mean?

Did arcade monitors have same pixel aspect ratio as TV sets?

Should I stop contributing to retirement accounts?

250 Floor Tower

Is there a single word describing earning money through any means?

Why is it that I can sometimes guess the next note?

How to indicate a cut out for a product window



Can a neural network compute $y = x^2$?


Debugging Neural Network for (Natural Language) TaggingIs ML a good solution for identifying what the user wants to do from a sentence?Which functions neural net can't approximateQ Learning Neural network for tic tac toe Input implementation problemError in Neural NetworkWhat database should I use?Reinforcement learning - How to deal with varying number of actions which do number approximationMultiple-input multiple-output CNN with custom loss functionWhy are neuron activations stored as a column vector?Learning a highly non-linear function with a small data set













6












$begingroup$


In spirit of the famous Tensorflow Fizz Buzz joke and XOr problem I started to think, if it's possible to design a neural network that implements $y = x^2$ function?



Given some representation of a number (e.g. as a vector in binary form, so that number 5 is represented as [1,0,1,0,0,0,0,...]), the neural network should learn to return its square - 25 in this case.



If I could implement $y=x^2$, I could probably implement $y=x^3$ and generally any polynomial of x, and then with Taylor series I could approximate $y=sin(x)$, which would solve the Fizz Buzz problem - a neural network that can find remainder of the division.



Clearly, just the linear part of NNs won't be able to perform this task, so if we could do the multiplication, it would be happening thanks to activation function.



Can you suggest any ideas or reading on subject?










share|improve this question









New contributor




Boris Burkov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    6












    $begingroup$


    In spirit of the famous Tensorflow Fizz Buzz joke and XOr problem I started to think, if it's possible to design a neural network that implements $y = x^2$ function?



    Given some representation of a number (e.g. as a vector in binary form, so that number 5 is represented as [1,0,1,0,0,0,0,...]), the neural network should learn to return its square - 25 in this case.



    If I could implement $y=x^2$, I could probably implement $y=x^3$ and generally any polynomial of x, and then with Taylor series I could approximate $y=sin(x)$, which would solve the Fizz Buzz problem - a neural network that can find remainder of the division.



    Clearly, just the linear part of NNs won't be able to perform this task, so if we could do the multiplication, it would be happening thanks to activation function.



    Can you suggest any ideas or reading on subject?










    share|improve this question









    New contributor




    Boris Burkov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      6












      6








      6


      3



      $begingroup$


      In spirit of the famous Tensorflow Fizz Buzz joke and XOr problem I started to think, if it's possible to design a neural network that implements $y = x^2$ function?



      Given some representation of a number (e.g. as a vector in binary form, so that number 5 is represented as [1,0,1,0,0,0,0,...]), the neural network should learn to return its square - 25 in this case.



      If I could implement $y=x^2$, I could probably implement $y=x^3$ and generally any polynomial of x, and then with Taylor series I could approximate $y=sin(x)$, which would solve the Fizz Buzz problem - a neural network that can find remainder of the division.



      Clearly, just the linear part of NNs won't be able to perform this task, so if we could do the multiplication, it would be happening thanks to activation function.



      Can you suggest any ideas or reading on subject?










      share|improve this question









      New contributor




      Boris Burkov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      In spirit of the famous Tensorflow Fizz Buzz joke and XOr problem I started to think, if it's possible to design a neural network that implements $y = x^2$ function?



      Given some representation of a number (e.g. as a vector in binary form, so that number 5 is represented as [1,0,1,0,0,0,0,...]), the neural network should learn to return its square - 25 in this case.



      If I could implement $y=x^2$, I could probably implement $y=x^3$ and generally any polynomial of x, and then with Taylor series I could approximate $y=sin(x)$, which would solve the Fizz Buzz problem - a neural network that can find remainder of the division.



      Clearly, just the linear part of NNs won't be able to perform this task, so if we could do the multiplication, it would be happening thanks to activation function.



      Can you suggest any ideas or reading on subject?







      machine-learning neural-network






      share|improve this question









      New contributor




      Boris Burkov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question









      New contributor




      Boris Burkov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question








      edited yesterday







      Boris Burkov













      New contributor




      Boris Burkov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked yesterday









      Boris BurkovBoris Burkov

      1335




      1335




      New contributor




      Boris Burkov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Boris Burkov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Boris Burkov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          2 Answers
          2






          active

          oldest

          votes


















          7












          $begingroup$

          Neural networks are also called as the universal function approximation which is based in the universal function approximation theorem. It states that :




          In the mathematical theory of artificial neural networks,
          the universal approximation theorem states that a feed-forward network
          with a single hidden layer containing a finite number of neurons can
          approximate continuous functions on compact subsets of Rn, under mild
          assumptions on the activation function




          Meaning a ANN with a non linear activation function could map the function which relates the input with the output. The function y = x^2 could be easily approximated using regression ANN.



          You can find an excellent lesson here with a notebook example.



          Also, because of such ability ANN could map complex relationships for example between an image and its labels.






          share|improve this answer









          $endgroup$








          • 2




            $begingroup$
            Thank you very much, this is exactly what I was asking for!
            $endgroup$
            – Boris Burkov
            yesterday






          • 2




            $begingroup$
            Although true, it a very bad idea to learn that. I fail to see where any generalization power would arise from. NN shine when there's something to generalize. Like CNN for vision that capture patterns, or RNN that can capture trends.
            $endgroup$
            – Jeffrey
            yesterday



















          3












          $begingroup$

          I think the answer of @ShubhamPanchal is a little bit misleading. Yes, it is true that by Cybenko's universal approximation theorem we can approximate $f(x)=x^2$ with a single hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of $mathbbR^n$, under mild assumptions on the activation function.




          But the main problem is that the theorem has a very important
          limitation
          . The function needs to be defined on compact subsets of
          $mathbbR^n$
          (compact subset = bounded + closed subset). But why
          is this problematic?
          . When training the function approximator you
          will always have a finite data set. Hence, you will approximate the
          function inside a compact subset of $mathbbR^n$. But we can always
          find a point $x$ for which the approximation will probably fail. That
          being said. If you only want to approximate $f(x)=x^2$ on a compact
          subset of $mathbbR$ then we can answer your question with yes.
          But if you want to approximate $f(x)=x^2$ for all $xin mathbbR$
          then the answer is no (I exclude the trivial case in which you use
          a quadratic activation function).




          Side remark on Taylor approximation: You always have to keep in mind that a Taylor approximation is only a local approximation. If you only want to approximate a function in a predefined region then you should be able to use Taylor series. But approximating $sin(x)$ by the Taylor series evaluated at $x=0$ will give you horrible results for $xto 10000$ if you don't use enough terms in your Taylor expansion.






          share|improve this answer










          New contributor




          MachineLearner is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$








          • 1




            $begingroup$
            Nice catch! "compact set".
            $endgroup$
            – Esmailian
            yesterday










          • $begingroup$
            Many thanks, mate! Eye-opener!
            $endgroup$
            – Boris Burkov
            yesterday










          • $begingroup$
            @Esmailian: Thank you :).
            $endgroup$
            – MachineLearner
            yesterday










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );






          Boris Burkov is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47787%2fcan-a-neural-network-compute-y-x2%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          7












          $begingroup$

          Neural networks are also called as the universal function approximation which is based in the universal function approximation theorem. It states that :




          In the mathematical theory of artificial neural networks,
          the universal approximation theorem states that a feed-forward network
          with a single hidden layer containing a finite number of neurons can
          approximate continuous functions on compact subsets of Rn, under mild
          assumptions on the activation function




          Meaning a ANN with a non linear activation function could map the function which relates the input with the output. The function y = x^2 could be easily approximated using regression ANN.



          You can find an excellent lesson here with a notebook example.



          Also, because of such ability ANN could map complex relationships for example between an image and its labels.






          share|improve this answer









          $endgroup$








          • 2




            $begingroup$
            Thank you very much, this is exactly what I was asking for!
            $endgroup$
            – Boris Burkov
            yesterday






          • 2




            $begingroup$
            Although true, it a very bad idea to learn that. I fail to see where any generalization power would arise from. NN shine when there's something to generalize. Like CNN for vision that capture patterns, or RNN that can capture trends.
            $endgroup$
            – Jeffrey
            yesterday
















          7












          $begingroup$

          Neural networks are also called as the universal function approximation which is based in the universal function approximation theorem. It states that :




          In the mathematical theory of artificial neural networks,
          the universal approximation theorem states that a feed-forward network
          with a single hidden layer containing a finite number of neurons can
          approximate continuous functions on compact subsets of Rn, under mild
          assumptions on the activation function




          Meaning a ANN with a non linear activation function could map the function which relates the input with the output. The function y = x^2 could be easily approximated using regression ANN.



          You can find an excellent lesson here with a notebook example.



          Also, because of such ability ANN could map complex relationships for example between an image and its labels.






          share|improve this answer









          $endgroup$








          • 2




            $begingroup$
            Thank you very much, this is exactly what I was asking for!
            $endgroup$
            – Boris Burkov
            yesterday






          • 2




            $begingroup$
            Although true, it a very bad idea to learn that. I fail to see where any generalization power would arise from. NN shine when there's something to generalize. Like CNN for vision that capture patterns, or RNN that can capture trends.
            $endgroup$
            – Jeffrey
            yesterday














          7












          7








          7





          $begingroup$

          Neural networks are also called as the universal function approximation which is based in the universal function approximation theorem. It states that :




          In the mathematical theory of artificial neural networks,
          the universal approximation theorem states that a feed-forward network
          with a single hidden layer containing a finite number of neurons can
          approximate continuous functions on compact subsets of Rn, under mild
          assumptions on the activation function




          Meaning a ANN with a non linear activation function could map the function which relates the input with the output. The function y = x^2 could be easily approximated using regression ANN.



          You can find an excellent lesson here with a notebook example.



          Also, because of such ability ANN could map complex relationships for example between an image and its labels.






          share|improve this answer









          $endgroup$



          Neural networks are also called as the universal function approximation which is based in the universal function approximation theorem. It states that :




          In the mathematical theory of artificial neural networks,
          the universal approximation theorem states that a feed-forward network
          with a single hidden layer containing a finite number of neurons can
          approximate continuous functions on compact subsets of Rn, under mild
          assumptions on the activation function




          Meaning a ANN with a non linear activation function could map the function which relates the input with the output. The function y = x^2 could be easily approximated using regression ANN.



          You can find an excellent lesson here with a notebook example.



          Also, because of such ability ANN could map complex relationships for example between an image and its labels.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered yesterday









          Shubham PanchalShubham Panchal

          35117




          35117







          • 2




            $begingroup$
            Thank you very much, this is exactly what I was asking for!
            $endgroup$
            – Boris Burkov
            yesterday






          • 2




            $begingroup$
            Although true, it a very bad idea to learn that. I fail to see where any generalization power would arise from. NN shine when there's something to generalize. Like CNN for vision that capture patterns, or RNN that can capture trends.
            $endgroup$
            – Jeffrey
            yesterday













          • 2




            $begingroup$
            Thank you very much, this is exactly what I was asking for!
            $endgroup$
            – Boris Burkov
            yesterday






          • 2




            $begingroup$
            Although true, it a very bad idea to learn that. I fail to see where any generalization power would arise from. NN shine when there's something to generalize. Like CNN for vision that capture patterns, or RNN that can capture trends.
            $endgroup$
            – Jeffrey
            yesterday








          2




          2




          $begingroup$
          Thank you very much, this is exactly what I was asking for!
          $endgroup$
          – Boris Burkov
          yesterday




          $begingroup$
          Thank you very much, this is exactly what I was asking for!
          $endgroup$
          – Boris Burkov
          yesterday




          2




          2




          $begingroup$
          Although true, it a very bad idea to learn that. I fail to see where any generalization power would arise from. NN shine when there's something to generalize. Like CNN for vision that capture patterns, or RNN that can capture trends.
          $endgroup$
          – Jeffrey
          yesterday





          $begingroup$
          Although true, it a very bad idea to learn that. I fail to see where any generalization power would arise from. NN shine when there's something to generalize. Like CNN for vision that capture patterns, or RNN that can capture trends.
          $endgroup$
          – Jeffrey
          yesterday












          3












          $begingroup$

          I think the answer of @ShubhamPanchal is a little bit misleading. Yes, it is true that by Cybenko's universal approximation theorem we can approximate $f(x)=x^2$ with a single hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of $mathbbR^n$, under mild assumptions on the activation function.




          But the main problem is that the theorem has a very important
          limitation
          . The function needs to be defined on compact subsets of
          $mathbbR^n$
          (compact subset = bounded + closed subset). But why
          is this problematic?
          . When training the function approximator you
          will always have a finite data set. Hence, you will approximate the
          function inside a compact subset of $mathbbR^n$. But we can always
          find a point $x$ for which the approximation will probably fail. That
          being said. If you only want to approximate $f(x)=x^2$ on a compact
          subset of $mathbbR$ then we can answer your question with yes.
          But if you want to approximate $f(x)=x^2$ for all $xin mathbbR$
          then the answer is no (I exclude the trivial case in which you use
          a quadratic activation function).




          Side remark on Taylor approximation: You always have to keep in mind that a Taylor approximation is only a local approximation. If you only want to approximate a function in a predefined region then you should be able to use Taylor series. But approximating $sin(x)$ by the Taylor series evaluated at $x=0$ will give you horrible results for $xto 10000$ if you don't use enough terms in your Taylor expansion.






          share|improve this answer










          New contributor




          MachineLearner is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$








          • 1




            $begingroup$
            Nice catch! "compact set".
            $endgroup$
            – Esmailian
            yesterday










          • $begingroup$
            Many thanks, mate! Eye-opener!
            $endgroup$
            – Boris Burkov
            yesterday










          • $begingroup$
            @Esmailian: Thank you :).
            $endgroup$
            – MachineLearner
            yesterday















          3












          $begingroup$

          I think the answer of @ShubhamPanchal is a little bit misleading. Yes, it is true that by Cybenko's universal approximation theorem we can approximate $f(x)=x^2$ with a single hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of $mathbbR^n$, under mild assumptions on the activation function.




          But the main problem is that the theorem has a very important
          limitation
          . The function needs to be defined on compact subsets of
          $mathbbR^n$
          (compact subset = bounded + closed subset). But why
          is this problematic?
          . When training the function approximator you
          will always have a finite data set. Hence, you will approximate the
          function inside a compact subset of $mathbbR^n$. But we can always
          find a point $x$ for which the approximation will probably fail. That
          being said. If you only want to approximate $f(x)=x^2$ on a compact
          subset of $mathbbR$ then we can answer your question with yes.
          But if you want to approximate $f(x)=x^2$ for all $xin mathbbR$
          then the answer is no (I exclude the trivial case in which you use
          a quadratic activation function).




          Side remark on Taylor approximation: You always have to keep in mind that a Taylor approximation is only a local approximation. If you only want to approximate a function in a predefined region then you should be able to use Taylor series. But approximating $sin(x)$ by the Taylor series evaluated at $x=0$ will give you horrible results for $xto 10000$ if you don't use enough terms in your Taylor expansion.






          share|improve this answer










          New contributor




          MachineLearner is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$








          • 1




            $begingroup$
            Nice catch! "compact set".
            $endgroup$
            – Esmailian
            yesterday










          • $begingroup$
            Many thanks, mate! Eye-opener!
            $endgroup$
            – Boris Burkov
            yesterday










          • $begingroup$
            @Esmailian: Thank you :).
            $endgroup$
            – MachineLearner
            yesterday













          3












          3








          3





          $begingroup$

          I think the answer of @ShubhamPanchal is a little bit misleading. Yes, it is true that by Cybenko's universal approximation theorem we can approximate $f(x)=x^2$ with a single hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of $mathbbR^n$, under mild assumptions on the activation function.




          But the main problem is that the theorem has a very important
          limitation
          . The function needs to be defined on compact subsets of
          $mathbbR^n$
          (compact subset = bounded + closed subset). But why
          is this problematic?
          . When training the function approximator you
          will always have a finite data set. Hence, you will approximate the
          function inside a compact subset of $mathbbR^n$. But we can always
          find a point $x$ for which the approximation will probably fail. That
          being said. If you only want to approximate $f(x)=x^2$ on a compact
          subset of $mathbbR$ then we can answer your question with yes.
          But if you want to approximate $f(x)=x^2$ for all $xin mathbbR$
          then the answer is no (I exclude the trivial case in which you use
          a quadratic activation function).




          Side remark on Taylor approximation: You always have to keep in mind that a Taylor approximation is only a local approximation. If you only want to approximate a function in a predefined region then you should be able to use Taylor series. But approximating $sin(x)$ by the Taylor series evaluated at $x=0$ will give you horrible results for $xto 10000$ if you don't use enough terms in your Taylor expansion.






          share|improve this answer










          New contributor




          MachineLearner is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$



          I think the answer of @ShubhamPanchal is a little bit misleading. Yes, it is true that by Cybenko's universal approximation theorem we can approximate $f(x)=x^2$ with a single hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of $mathbbR^n$, under mild assumptions on the activation function.




          But the main problem is that the theorem has a very important
          limitation
          . The function needs to be defined on compact subsets of
          $mathbbR^n$
          (compact subset = bounded + closed subset). But why
          is this problematic?
          . When training the function approximator you
          will always have a finite data set. Hence, you will approximate the
          function inside a compact subset of $mathbbR^n$. But we can always
          find a point $x$ for which the approximation will probably fail. That
          being said. If you only want to approximate $f(x)=x^2$ on a compact
          subset of $mathbbR$ then we can answer your question with yes.
          But if you want to approximate $f(x)=x^2$ for all $xin mathbbR$
          then the answer is no (I exclude the trivial case in which you use
          a quadratic activation function).




          Side remark on Taylor approximation: You always have to keep in mind that a Taylor approximation is only a local approximation. If you only want to approximate a function in a predefined region then you should be able to use Taylor series. But approximating $sin(x)$ by the Taylor series evaluated at $x=0$ will give you horrible results for $xto 10000$ if you don't use enough terms in your Taylor expansion.







          share|improve this answer










          New contributor




          MachineLearner is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.









          share|improve this answer



          share|improve this answer








          edited yesterday





















          New contributor




          MachineLearner is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.









          answered yesterday









          MachineLearnerMachineLearner

          30410




          30410




          New contributor




          MachineLearner is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.





          New contributor





          MachineLearner is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          MachineLearner is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.







          • 1




            $begingroup$
            Nice catch! "compact set".
            $endgroup$
            – Esmailian
            yesterday










          • $begingroup$
            Many thanks, mate! Eye-opener!
            $endgroup$
            – Boris Burkov
            yesterday










          • $begingroup$
            @Esmailian: Thank you :).
            $endgroup$
            – MachineLearner
            yesterday












          • 1




            $begingroup$
            Nice catch! "compact set".
            $endgroup$
            – Esmailian
            yesterday










          • $begingroup$
            Many thanks, mate! Eye-opener!
            $endgroup$
            – Boris Burkov
            yesterday










          • $begingroup$
            @Esmailian: Thank you :).
            $endgroup$
            – MachineLearner
            yesterday







          1




          1




          $begingroup$
          Nice catch! "compact set".
          $endgroup$
          – Esmailian
          yesterday




          $begingroup$
          Nice catch! "compact set".
          $endgroup$
          – Esmailian
          yesterday












          $begingroup$
          Many thanks, mate! Eye-opener!
          $endgroup$
          – Boris Burkov
          yesterday




          $begingroup$
          Many thanks, mate! Eye-opener!
          $endgroup$
          – Boris Burkov
          yesterday












          $begingroup$
          @Esmailian: Thank you :).
          $endgroup$
          – MachineLearner
          yesterday




          $begingroup$
          @Esmailian: Thank you :).
          $endgroup$
          – MachineLearner
          yesterday










          Boris Burkov is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          Boris Burkov is a new contributor. Be nice, and check out our Code of Conduct.












          Boris Burkov is a new contributor. Be nice, and check out our Code of Conduct.











          Boris Burkov is a new contributor. Be nice, and check out our Code of Conduct.














          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47787%2fcan-a-neural-network-compute-y-x2%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          getting Checkpoint VPN SSL Network Extender working in the command lineHow to connect to CheckPoint VPN on Ubuntu 18.04LTS?Will the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayVPN SSL Network Extender in FirefoxLinux Checkpoint SNX tool configuration issuesCheck Point - Connect under Linux - snx + OTPSNX VPN Ububuntu 18.XXUsing Checkpoint VPN SSL Network Extender CLI with certificateVPN with network manager (nm-applet) is not workingWill the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayImport VPN config files to NetworkManager from command lineTrouble connecting to VPN using network-manager, while command line worksStart a VPN connection with PPTP protocol on command linestarting a docker service daemon breaks the vpn networkCan't connect to vpn with Network-managerVPN SSL Network Extender in FirefoxUsing Checkpoint VPN SSL Network Extender CLI with certificate

          대한민국 목차 국명 지리 역사 정치 국방 경제 사회 문화 국제 순위 관련 항목 각주 외부 링크 둘러보기 메뉴북위 37° 34′ 08″ 동경 126° 58′ 36″ / 북위 37.568889° 동경 126.976667°  / 37.568889; 126.976667ehThe Korean Repository문단을 편집문단을 편집추가해Clarkson PLC 사Report for Selected Countries and Subjects-Korea“Human Development Index and its components: P.198”“http://www.law.go.kr/%EB%B2%95%EB%A0%B9/%EB%8C%80%ED%95%9C%EB%AF%BC%EA%B5%AD%EA%B5%AD%EA%B8%B0%EB%B2%95”"한국은 국제법상 한반도 유일 합법정부 아니다" - 오마이뉴스 모바일Report for Selected Countries and Subjects: South Korea격동의 역사와 함께한 조선일보 90년 : 조선일보 인수해 혁신시킨 신석우, 임시정부 때는 '대한민국' 국호(國號) 정해《우리가 몰랐던 우리 역사: 나라 이름의 비밀을 찾아가는 역사 여행》“남북 공식호칭 ‘남한’‘북한’으로 쓴다”“Corea 대 Korea, 누가 이긴 거야?”국내기후자료 - 한국[김대중 前 대통령 서거] 과감한 구조개혁 'DJ노믹스'로 최단기간 환란극복 :: 네이버 뉴스“이라크 "韓-쿠르드 유전개발 MOU 승인 안해"(종합)”“해외 우리국민 추방사례 43%가 일본”차기전차 K2'흑표'의 세계 최고 전력 분석, 쿠키뉴스 엄기영, 2007-03-02두산인프라, 헬기잡는 장갑차 'K21'...내년부터 공급, 고뉴스 이대준, 2008-10-30과거 내용 찾기mk 뉴스 - 구매력 기준으로 보면 한국 1인당 소득 3만弗과거 내용 찾기"The N-11: More Than an Acronym"Archived조선일보 최우석, 2008-11-01Global 500 2008: Countries - South Korea“몇년째 '시한폭탄'... 가계부채, 올해는 터질까”가구당 부채 5000만원 처음 넘어서“‘빚’으로 내몰리는 사회.. 위기의 가계대출”“[경제365] 공공부문 부채 급증…800조 육박”“"소득 양극화 다소 완화...불평등은 여전"”“공정사회·공생발전 한참 멀었네”iSuppli,08年2QのDRAMシェア・ランキングを発表(08/8/11)South Korea dominates shipbuilding industry | Stock Market News & Stocks to Watch from StraightStocks한국 자동차 생산, 3년 연속 세계 5위자동차수출 '현대-삼성 웃고 기아-대우-쌍용은 울고' 과거 내용 찾기동반성장위 창립 1주년 맞아Archived"중기적합 3개업종 합의 무시한 채 선정"李대통령, 사업 무분별 확장 소상공인 생계 위협 질타삼성-LG, 서민업종인 빵·분식사업 잇따라 철수상생은 뒷전…SSM ‘몸집 불리기’ 혈안Archived“경부고속도에 '아시안하이웨이' 표지판”'철의 실크로드' 앞서 '말(言)의 실크로드'부터, 프레시안 정창현, 2008-10-01“'서울 지하철은 안전한가?'”“서울시 “올해 안에 모든 지하철역 스크린도어 설치””“부산지하철 1,2호선 승강장 안전펜스 설치 완료”“전교조, 정부 노조 통계서 처음 빠져”“[Weekly BIZ] 도요타 '제로 이사회'가 리콜 사태 불러들였다”“S Korea slams high tuition costs”““정치가 여론 양극화 부채질… 합리주의 절실””“〈"`촛불집회'는 민주주의의 질적 변화 상징"〉”““촛불집회가 민주주의 왜곡 초래””“국민 65%, "한국 노사관계 대립적"”“한국 국가경쟁력 27위‥노사관계 '꼴찌'”“제대로 형성되지 않은 대한민국 이념지형”“[신년기획-갈등의 시대] 갈등지수 OECD 4위…사회적 손실 GDP 27% 무려 300조”“2012 총선-대선의 키워드는 '국민과 소통'”“한국 삶의 질 27위, 2000년과 2008년 연속 하위권 머물러”“[해피 코리아] 행복점수 68점…해외 평가선 '낙제점'”“한국 어린이·청소년 행복지수 3년 연속 OECD ‘꼴찌’”“한국 이혼율 OECD중 8위”“[통계청] 한국 이혼율 OECD 4위”“오피니언 [이렇게 생각한다] `부부의 날` 에 돌아본 이혼율 1위 한국”“Suicide Rates by Country, Global Health Observatory Data Repository.”“1. 또 다른 차별”“오피니언 [편집자에게] '왕따'와 '패거리 정치' 심리는 닮은꼴”“[미래한국리포트] 무한경쟁에 빠진 대한민국”“대학생 98% "외모가 경쟁력이라는 말 동의"”“특급호텔 웨딩·200만원대 유모차… "남보다 더…" 호화病, 고질병 됐다”“[스트레스 공화국] ① 경쟁사회, 스트레스 쌓인다”““매일 30여명 자살 한국, 의사보다 무속인에…””“"자살 부르는 '우울증', 환자 중 85% 치료 안 받아"”“정신병원을 가다”“대한민국도 ‘묻지마 범죄’,안전지대 아니다”“유엔 "학생 '성적 지향'에 따른 차별 금지하라"”“유엔아동권리위원회 보고서 및 번역본 원문”“고졸 성공스토리 담은 '제빵왕 김탁구' 드라마 나온다”“‘빛 좋은 개살구’ 고졸 취업…실습 대신 착취”원본 문서“정신건강, 사회적 편견부터 고쳐드립니다”‘소통’과 ‘행복’에 목 마른 사회가 잠들어 있던 ‘심리학’ 깨웠다“[포토] 사유리-곽금주 교수의 유쾌한 심리상담”“"올해 한국인 평균 영화관람횟수 세계 1위"(종합)”“[게임연중기획] 게임은 문화다-여가활동 1순위 게임”“영화속 ‘영어 지상주의’ …“왠지 씁쓸한데””“2월 `신문 부수 인증기관` 지정..방송법 후속작업”“무료신문 성장동력 ‘차별성’과 ‘갈등해소’”대한민국 국회 법률지식정보시스템"Pew Research Center's Religion & Public Life Project: South Korea"“amp;vwcd=MT_ZTITLE&path=인구·가구%20>%20인구총조사%20>%20인구부문%20>%20 총조사인구(2005)%20>%20전수부문&oper_YN=Y&item=&keyword=종교별%20인구& amp;lang_mode=kor&list_id= 2005년 통계청 인구 총조사”원본 문서“한국인이 좋아하는 취미와 운동 (2004-2009)”“한국인이 좋아하는 취미와 운동 (2004-2014)”Archived“한국, `부분적 언론자유국' 강등〈프리덤하우스〉”“국경없는기자회 "한국, 인터넷감시 대상국"”“한국, 조선산업 1위 유지(S. Korea Stays Top Shipbuilding Nation) RZD-Partner Portal”원본 문서“한국, 4년 만에 ‘선박건조 1위’”“옛 마산시,인터넷속도 세계 1위”“"한국 초고속 인터넷망 세계1위"”“인터넷·휴대폰 요금, 외국보다 훨씬 비싸”“한국 관세행정 6년 연속 세계 '1위'”“한국 교통사고 사망자 수 OECD 회원국 중 2위”“결핵 후진국' 한국, 환자가 급증한 이유는”“수술은 신중해야… 자칫하면 생명 위협”대한민국분류대한민국의 지도대한민국 정부대표 다국어포털대한민국 전자정부대한민국 국회한국방송공사about korea and information korea브리태니커 백과사전(한국편)론리플래닛의 정보(한국편)CIA의 세계 정보(한국편)마리암 부디아 (Mariam Budia),『한국: 하늘이 내린 한 폭의 그림』, 서울: 트랜스라틴 19호 (2012년 3월)대한민국ehehehehehehehehehehehehehehWorldCat132441370n791268020000 0001 2308 81034078029-6026373548cb11863345f(데이터)00573706ge128495

          Cannot Extend partition with GParted The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Community Moderator Election ResultsCan't increase partition size with GParted?GParted doesn't recognize the unallocated space after my current partitionWhat is the best way to add unallocated space located before to Ubuntu 12.04 partition with GParted live?I can't figure out how to extend my Arch home partition into free spaceGparted Linux Mint 18.1 issueTrying to extend but swap partition is showing as Unknown in Gparted, shows proper from fdiskRearrange partitions in gparted to extend a partitionUnable to extend partition even though unallocated space is next to it using GPartedAllocate free space to root partitiongparted: how to merge unallocated space with a partition