Can someone shed some light on this inequality? The Next CEO of Stack OverflowShow that the sequence $left(frac2^nn!right)$ has a limit.Determine value the following: $L=sum_k=1^inftyfrac1k^k$Could someone help me clarify the steps for this solution?Understanding how to use $epsilon-delta$ definition of a limitHow can an imaginary equation give a real answer?Can someone claify on the work that was done in this question on Maclaurin SeriesConvergence of series $nq^n$.How does this limit converge to zeroUnderstanding part of a proof for Stolz-Cesaro TheoremAbout a statement of partial fraction in an answer

Rotate a column

I want to delete every two lines after 3rd lines in file contain very large number of lines :

Can you be charged for obstruction for refusing to answer questions?

Flying from Cape Town to England and return to another province

Can MTA send mail via a relay without being told so?

Why, when going from special to general relativity, do we just replace partial derivatives with covariant derivatives?

Are police here, aren't itthey?

Why is information "lost" when it got into a black hole?

How did people program for Consoles with multiple CPUs?

Why is quantifier elimination desirable for a given theory?

Reference request: Grassmannian and Plucker coordinates in type B, C, D

Can we say or write : "No, it'sn't"?

Is it possible to use a NPN BJT as switch, from single power source?

Newlines in BSD sed vs gsed

Is there a difference between "Fahrstuhl" and "Aufzug"

Make solar eclipses exceedingly rare, but still have new moons

How to get from Geneva Airport to Metabief, Doubs, France by public transport?

INSERT to a table from a database to other (same SQL Server) using Dynamic SQL

Dominated convergence theorem - what sequence?

Is a distribution that is normal, but highly skewed considered Gaussian?

Example of a Mathematician/Physicist whose Other Publications during their PhD eclipsed their PhD Thesis

Where do students learn to solve polynomial equations these days?

Is it my responsibility to learn a new technology in my own time my employer wants to implement?

If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?



Can someone shed some light on this inequality?



The Next CEO of Stack OverflowShow that the sequence $left(frac2^nn!right)$ has a limit.Determine value the following: $L=sum_k=1^inftyfrac1k^k$Could someone help me clarify the steps for this solution?Understanding how to use $epsilon-delta$ definition of a limitHow can an imaginary equation give a real answer?Can someone claify on the work that was done in this question on Maclaurin SeriesConvergence of series $nq^n$.How does this limit converge to zeroUnderstanding part of a proof for Stolz-Cesaro TheoremAbout a statement of partial fraction in an answer










1












$begingroup$


I have a question relating to image that I've attached. It is a proof that the sequence is increasing. I don't understand the logic behind the third equation $$fraca_n+1a_n>left (1-frac1n+1right ) left (fracn+1nright)$$



where does the equation in the first and second parenthesis come from?



Ok, I have another relating question:



why $$fraca_n+1a_n> (1+frac1n)$$ ( The expression of third line.



!The proof[1]










share|cite|improve this question











$endgroup$











  • $begingroup$
    Please do not post necessary information only in a picture, not everyone can display and read it properly.
    $endgroup$
    – Carsten S
    2 days ago















1












$begingroup$


I have a question relating to image that I've attached. It is a proof that the sequence is increasing. I don't understand the logic behind the third equation $$fraca_n+1a_n>left (1-frac1n+1right ) left (fracn+1nright)$$



where does the equation in the first and second parenthesis come from?



Ok, I have another relating question:



why $$fraca_n+1a_n> (1+frac1n)$$ ( The expression of third line.



!The proof[1]










share|cite|improve this question











$endgroup$











  • $begingroup$
    Please do not post necessary information only in a picture, not everyone can display and read it properly.
    $endgroup$
    – Carsten S
    2 days ago













1












1








1


2



$begingroup$


I have a question relating to image that I've attached. It is a proof that the sequence is increasing. I don't understand the logic behind the third equation $$fraca_n+1a_n>left (1-frac1n+1right ) left (fracn+1nright)$$



where does the equation in the first and second parenthesis come from?



Ok, I have another relating question:



why $$fraca_n+1a_n> (1+frac1n)$$ ( The expression of third line.



!The proof[1]










share|cite|improve this question











$endgroup$




I have a question relating to image that I've attached. It is a proof that the sequence is increasing. I don't understand the logic behind the third equation $$fraca_n+1a_n>left (1-frac1n+1right ) left (fracn+1nright)$$



where does the equation in the first and second parenthesis come from?



Ok, I have another relating question:



why $$fraca_n+1a_n> (1+frac1n)$$ ( The expression of third line.



!The proof[1]







sequences-and-series limits eulers-constant






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago









Rodrigo de Azevedo

13.2k41960




13.2k41960










asked 2 days ago









Ieva BrakmaneIeva Brakmane

316




316











  • $begingroup$
    Please do not post necessary information only in a picture, not everyone can display and read it properly.
    $endgroup$
    – Carsten S
    2 days ago
















  • $begingroup$
    Please do not post necessary information only in a picture, not everyone can display and read it properly.
    $endgroup$
    – Carsten S
    2 days ago















$begingroup$
Please do not post necessary information only in a picture, not everyone can display and read it properly.
$endgroup$
– Carsten S
2 days ago




$begingroup$
Please do not post necessary information only in a picture, not everyone can display and read it properly.
$endgroup$
– Carsten S
2 days ago










3 Answers
3






active

oldest

votes


















4












$begingroup$

It is putting together the result from the first red box with the second one:



  • $fraca_n+1a_n = colorblueleft(1- frac1(n+1)^2 right)^n+1left( fracn+1nright)$

  • $colorblueleft(1- frac1(n+1)^2 right)^n+1 > colorgreen1 + (n+1)left( frac-1(n+1)^2right)$

$$Rightarrow fraca_n+1a_n > left(colorgreen1 + (n+1)left( frac-1(n+1)^2right)right)left( fracn+1nright) = left(underbrace1- frac1n+1_=fracnn+1right)left( fracn+1nright)$$






share|cite|improve this answer









$endgroup$




















    6












    $begingroup$

    From Bernoulli's inequality, we have



    $$left( 1- frac1(n+1)^2right) > 1+(n+1) left(frac-1(n+1)^2 right)=1-frac1n+1$$



    Hence,



    $$fraca_n+1a_n>left( 1- frac1(n+1)^2right)left( fracn+1nright)>left(1-frac1n+1 right)left( fracn+1nright)$$






    share|cite|improve this answer









    $endgroup$




















      2












      $begingroup$

      So, we have
      $$fraca_n+1a_n = left(1 - frac1(n+1)^2right)^n+1left(fracn+1nright).$$
      The author then applies Bernoulli's inequality to the first term on the RHS:
      $$left(1 - frac1(n+1)^2right)^n+1 > 1 + (n+1)left(frac-1(n+1)^2right) = 1 - frac1n+1.$$
      We can now return to the first equation and utilize this estimate; namely, we have
      $$fraca_n+1a_n = left(1 - frac1(n+1)^2right)^n+1left(fracn+1nright) > left(1-frac1n+1right)left(fracn+1nright).$$
      Finally, we multiply out the RHS of the inequality
      $$fraca_n+1a_n > left(1-frac1n+1right)left(fracn+1nright) = fracn+1n - frac1n = 1.$$
      So, we have
      $$fraca_n+1a_n > 1 implies a_n+1 > a_n,$$
      which means that $a_n$ is an increasing sequence.






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165778%2fcan-someone-shed-some-light-on-this-inequality%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        4












        $begingroup$

        It is putting together the result from the first red box with the second one:



        • $fraca_n+1a_n = colorblueleft(1- frac1(n+1)^2 right)^n+1left( fracn+1nright)$

        • $colorblueleft(1- frac1(n+1)^2 right)^n+1 > colorgreen1 + (n+1)left( frac-1(n+1)^2right)$

        $$Rightarrow fraca_n+1a_n > left(colorgreen1 + (n+1)left( frac-1(n+1)^2right)right)left( fracn+1nright) = left(underbrace1- frac1n+1_=fracnn+1right)left( fracn+1nright)$$






        share|cite|improve this answer









        $endgroup$

















          4












          $begingroup$

          It is putting together the result from the first red box with the second one:



          • $fraca_n+1a_n = colorblueleft(1- frac1(n+1)^2 right)^n+1left( fracn+1nright)$

          • $colorblueleft(1- frac1(n+1)^2 right)^n+1 > colorgreen1 + (n+1)left( frac-1(n+1)^2right)$

          $$Rightarrow fraca_n+1a_n > left(colorgreen1 + (n+1)left( frac-1(n+1)^2right)right)left( fracn+1nright) = left(underbrace1- frac1n+1_=fracnn+1right)left( fracn+1nright)$$






          share|cite|improve this answer









          $endgroup$















            4












            4








            4





            $begingroup$

            It is putting together the result from the first red box with the second one:



            • $fraca_n+1a_n = colorblueleft(1- frac1(n+1)^2 right)^n+1left( fracn+1nright)$

            • $colorblueleft(1- frac1(n+1)^2 right)^n+1 > colorgreen1 + (n+1)left( frac-1(n+1)^2right)$

            $$Rightarrow fraca_n+1a_n > left(colorgreen1 + (n+1)left( frac-1(n+1)^2right)right)left( fracn+1nright) = left(underbrace1- frac1n+1_=fracnn+1right)left( fracn+1nright)$$






            share|cite|improve this answer









            $endgroup$



            It is putting together the result from the first red box with the second one:



            • $fraca_n+1a_n = colorblueleft(1- frac1(n+1)^2 right)^n+1left( fracn+1nright)$

            • $colorblueleft(1- frac1(n+1)^2 right)^n+1 > colorgreen1 + (n+1)left( frac-1(n+1)^2right)$

            $$Rightarrow fraca_n+1a_n > left(colorgreen1 + (n+1)left( frac-1(n+1)^2right)right)left( fracn+1nright) = left(underbrace1- frac1n+1_=fracnn+1right)left( fracn+1nright)$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 2 days ago









            trancelocationtrancelocation

            13.4k1827




            13.4k1827





















                6












                $begingroup$

                From Bernoulli's inequality, we have



                $$left( 1- frac1(n+1)^2right) > 1+(n+1) left(frac-1(n+1)^2 right)=1-frac1n+1$$



                Hence,



                $$fraca_n+1a_n>left( 1- frac1(n+1)^2right)left( fracn+1nright)>left(1-frac1n+1 right)left( fracn+1nright)$$






                share|cite|improve this answer









                $endgroup$

















                  6












                  $begingroup$

                  From Bernoulli's inequality, we have



                  $$left( 1- frac1(n+1)^2right) > 1+(n+1) left(frac-1(n+1)^2 right)=1-frac1n+1$$



                  Hence,



                  $$fraca_n+1a_n>left( 1- frac1(n+1)^2right)left( fracn+1nright)>left(1-frac1n+1 right)left( fracn+1nright)$$






                  share|cite|improve this answer









                  $endgroup$















                    6












                    6








                    6





                    $begingroup$

                    From Bernoulli's inequality, we have



                    $$left( 1- frac1(n+1)^2right) > 1+(n+1) left(frac-1(n+1)^2 right)=1-frac1n+1$$



                    Hence,



                    $$fraca_n+1a_n>left( 1- frac1(n+1)^2right)left( fracn+1nright)>left(1-frac1n+1 right)left( fracn+1nright)$$






                    share|cite|improve this answer









                    $endgroup$



                    From Bernoulli's inequality, we have



                    $$left( 1- frac1(n+1)^2right) > 1+(n+1) left(frac-1(n+1)^2 right)=1-frac1n+1$$



                    Hence,



                    $$fraca_n+1a_n>left( 1- frac1(n+1)^2right)left( fracn+1nright)>left(1-frac1n+1 right)left( fracn+1nright)$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 2 days ago









                    Siong Thye GohSiong Thye Goh

                    103k1468119




                    103k1468119





















                        2












                        $begingroup$

                        So, we have
                        $$fraca_n+1a_n = left(1 - frac1(n+1)^2right)^n+1left(fracn+1nright).$$
                        The author then applies Bernoulli's inequality to the first term on the RHS:
                        $$left(1 - frac1(n+1)^2right)^n+1 > 1 + (n+1)left(frac-1(n+1)^2right) = 1 - frac1n+1.$$
                        We can now return to the first equation and utilize this estimate; namely, we have
                        $$fraca_n+1a_n = left(1 - frac1(n+1)^2right)^n+1left(fracn+1nright) > left(1-frac1n+1right)left(fracn+1nright).$$
                        Finally, we multiply out the RHS of the inequality
                        $$fraca_n+1a_n > left(1-frac1n+1right)left(fracn+1nright) = fracn+1n - frac1n = 1.$$
                        So, we have
                        $$fraca_n+1a_n > 1 implies a_n+1 > a_n,$$
                        which means that $a_n$ is an increasing sequence.






                        share|cite|improve this answer









                        $endgroup$

















                          2












                          $begingroup$

                          So, we have
                          $$fraca_n+1a_n = left(1 - frac1(n+1)^2right)^n+1left(fracn+1nright).$$
                          The author then applies Bernoulli's inequality to the first term on the RHS:
                          $$left(1 - frac1(n+1)^2right)^n+1 > 1 + (n+1)left(frac-1(n+1)^2right) = 1 - frac1n+1.$$
                          We can now return to the first equation and utilize this estimate; namely, we have
                          $$fraca_n+1a_n = left(1 - frac1(n+1)^2right)^n+1left(fracn+1nright) > left(1-frac1n+1right)left(fracn+1nright).$$
                          Finally, we multiply out the RHS of the inequality
                          $$fraca_n+1a_n > left(1-frac1n+1right)left(fracn+1nright) = fracn+1n - frac1n = 1.$$
                          So, we have
                          $$fraca_n+1a_n > 1 implies a_n+1 > a_n,$$
                          which means that $a_n$ is an increasing sequence.






                          share|cite|improve this answer









                          $endgroup$















                            2












                            2








                            2





                            $begingroup$

                            So, we have
                            $$fraca_n+1a_n = left(1 - frac1(n+1)^2right)^n+1left(fracn+1nright).$$
                            The author then applies Bernoulli's inequality to the first term on the RHS:
                            $$left(1 - frac1(n+1)^2right)^n+1 > 1 + (n+1)left(frac-1(n+1)^2right) = 1 - frac1n+1.$$
                            We can now return to the first equation and utilize this estimate; namely, we have
                            $$fraca_n+1a_n = left(1 - frac1(n+1)^2right)^n+1left(fracn+1nright) > left(1-frac1n+1right)left(fracn+1nright).$$
                            Finally, we multiply out the RHS of the inequality
                            $$fraca_n+1a_n > left(1-frac1n+1right)left(fracn+1nright) = fracn+1n - frac1n = 1.$$
                            So, we have
                            $$fraca_n+1a_n > 1 implies a_n+1 > a_n,$$
                            which means that $a_n$ is an increasing sequence.






                            share|cite|improve this answer









                            $endgroup$



                            So, we have
                            $$fraca_n+1a_n = left(1 - frac1(n+1)^2right)^n+1left(fracn+1nright).$$
                            The author then applies Bernoulli's inequality to the first term on the RHS:
                            $$left(1 - frac1(n+1)^2right)^n+1 > 1 + (n+1)left(frac-1(n+1)^2right) = 1 - frac1n+1.$$
                            We can now return to the first equation and utilize this estimate; namely, we have
                            $$fraca_n+1a_n = left(1 - frac1(n+1)^2right)^n+1left(fracn+1nright) > left(1-frac1n+1right)left(fracn+1nright).$$
                            Finally, we multiply out the RHS of the inequality
                            $$fraca_n+1a_n > left(1-frac1n+1right)left(fracn+1nright) = fracn+1n - frac1n = 1.$$
                            So, we have
                            $$fraca_n+1a_n > 1 implies a_n+1 > a_n,$$
                            which means that $a_n$ is an increasing sequence.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 2 days ago









                            Gary MoonGary Moon

                            92127




                            92127



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165778%2fcan-someone-shed-some-light-on-this-inequality%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                getting Checkpoint VPN SSL Network Extender working in the command lineHow to connect to CheckPoint VPN on Ubuntu 18.04LTS?Will the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayVPN SSL Network Extender in FirefoxLinux Checkpoint SNX tool configuration issuesCheck Point - Connect under Linux - snx + OTPSNX VPN Ububuntu 18.XXUsing Checkpoint VPN SSL Network Extender CLI with certificateVPN with network manager (nm-applet) is not workingWill the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayImport VPN config files to NetworkManager from command lineTrouble connecting to VPN using network-manager, while command line worksStart a VPN connection with PPTP protocol on command linestarting a docker service daemon breaks the vpn networkCan't connect to vpn with Network-managerVPN SSL Network Extender in FirefoxUsing Checkpoint VPN SSL Network Extender CLI with certificate

                                Cannot Extend partition with GParted The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Community Moderator Election ResultsCan't increase partition size with GParted?GParted doesn't recognize the unallocated space after my current partitionWhat is the best way to add unallocated space located before to Ubuntu 12.04 partition with GParted live?I can't figure out how to extend my Arch home partition into free spaceGparted Linux Mint 18.1 issueTrying to extend but swap partition is showing as Unknown in Gparted, shows proper from fdiskRearrange partitions in gparted to extend a partitionUnable to extend partition even though unallocated space is next to it using GPartedAllocate free space to root partitiongparted: how to merge unallocated space with a partition

                                Marilyn Monroe Ny fiainany manokana | Jereo koa | Meny fitetezanafanitarana azy.