Why does GHC infer a monomorphic type here, even with MonomorphismRestriction disabled? The Next CEO of Stack OverflowResolving the type of `f = f (<*>) pure`NoMonomorphismRestriction helps preserve sharing?How can eta-reduction of a well typed function result in a type error?Can I write such polymorphic function? What language extensions do I need?GHC rewrite rule specialising a function for a type classType Inference in PatternsHow to type check recursive definitions using Algorithm W?What is the monomorphism restriction?Why are higher rank types so fragile in HaskellWhy can't GHC typecheck this function involving polymorphism and existential types?Problems With Type Inference on (^)

Is it possible to replace duplicates of a character with one character using tr

How to avoid supervisors with prejudiced views?

Help understanding this unsettling image of Titan, Epimetheus, and Saturn's rings?

How to write a definition with variants?

A Man With a Stainless Steel Endoskeleton (like The Terminator) Fighting Cloaked Aliens Only He Can See

How to get from Geneva Airport to Metabief, Doubs, France by public transport?

How is this set of matrices closed under multiplication?

What did we know about the Kessel run before the prequels?

Why, when going from special to general relativity, do we just replace partial derivatives with covariant derivatives?

How did people program for Consoles with multiple CPUs?

Would a completely good Muggle be able to use a wand?

Why the difference in type-inference over the as-pattern in two similar function definitions?

Example of a Mathematician/Physicist whose Other Publications during their PhD eclipsed their PhD Thesis

How to check if all elements of 1 list are in the *same quantity* and in any order, in the list2?

The past simple of "gaslight" – "gaslighted" or "gaslit"?

Why doesn't UK go for the same deal Japan has with EU to resolve Brexit?

Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?

Rotate a column

Bartok - Syncopation (1): Meaning of notes in between Grand Staff

Why didn't Khan get resurrected in the Genesis Explosion?

Legal workarounds for testamentary trust perceived as unfair

Can you be charged for obstruction for refusing to answer questions?

Can I use the load factor to estimate the lift?

Unclear about dynamic binding



Why does GHC infer a monomorphic type here, even with MonomorphismRestriction disabled?



The Next CEO of Stack OverflowResolving the type of `f = f (<*>) pure`NoMonomorphismRestriction helps preserve sharing?How can eta-reduction of a well typed function result in a type error?Can I write such polymorphic function? What language extensions do I need?GHC rewrite rule specialising a function for a type classType Inference in PatternsHow to type check recursive definitions using Algorithm W?What is the monomorphism restriction?Why are higher rank types so fragile in HaskellWhy can't GHC typecheck this function involving polymorphism and existential types?Problems With Type Inference on (^)










16















This was prompted by Resolving the type of `f = f (<*>) pure`, which discusses a more complicated example, but this one works too.



The following definition compiles without problem:



w :: Integral a => a
w = fromInteger w


...Of course it doesn't work runtime-wise, but that's beside the question. The point is that the definition of w itself uses a specialised version of w :: Integer. Clearly that is a suitable instantiation, and therefore typechecks.



However, if we remove the signature, then GHC infers not the above type, but only the concrete one:



w' = fromInteger w'


GHCi> :t w
w :: Integral a => a
GHCi> :t w'
w' :: Integer


Well, when I saw this, I was fairly sure this was the monomorphism restriction at work. It's well known that also e.g.



i = 3


GHCi> :t i
i :: Integer


although i :: Num p => p would be perfectly possible. And indeed, i :: Num p => p is inferred if -XNoMonomorphismRestriction is active, i.e. if the monomorphism restriction is disabled.



However, in case of w' only the type Integer is inferred even when the monomorphism restriction is disabled.



To count out that this has something to do with defaulting:



fromFloat :: RealFrac a => Float -> a
q :: RealFrac a => a
q = fromFloat q
q' = fromFloat q'


GHCi> :t q
q :: RealFrac a => a
GHCi> :t q'
q' :: Float


Why is the polymorphic type not inferred?










share|improve this question
























  • Doesn't the monomorphism restriction apply only to simple bindings anyways (and w' = fromInteger w', being recursive, is not simple)?

    – Alec
    2 days ago











  • @Alec possible, but still – why does something like the monomorphism restriction seem to kick in here?

    – leftaroundabout
    2 days ago











  • I'm probably being dense and missing something here, but fromInteger has type (Num a) => Integer -> a, and since w' is used as the input to fromInteger, doesn't that mean Integer is the only possible type for it? Indeed I'm rather surprised that the version with the polymorphic type signature compiles. (So as I said, probably missing something.)

    – Robin Zigmond
    2 days ago











  • @RobinZigmond Integer is certainly the only possible monomorphic type for w', but as w demonstrates a polymorphic type is perfectly fine as well. After all, a polymorphic type can be instantiated to a monomorphic one, provided it fulfills the constraints.

    – leftaroundabout
    2 days ago
















16















This was prompted by Resolving the type of `f = f (<*>) pure`, which discusses a more complicated example, but this one works too.



The following definition compiles without problem:



w :: Integral a => a
w = fromInteger w


...Of course it doesn't work runtime-wise, but that's beside the question. The point is that the definition of w itself uses a specialised version of w :: Integer. Clearly that is a suitable instantiation, and therefore typechecks.



However, if we remove the signature, then GHC infers not the above type, but only the concrete one:



w' = fromInteger w'


GHCi> :t w
w :: Integral a => a
GHCi> :t w'
w' :: Integer


Well, when I saw this, I was fairly sure this was the monomorphism restriction at work. It's well known that also e.g.



i = 3


GHCi> :t i
i :: Integer


although i :: Num p => p would be perfectly possible. And indeed, i :: Num p => p is inferred if -XNoMonomorphismRestriction is active, i.e. if the monomorphism restriction is disabled.



However, in case of w' only the type Integer is inferred even when the monomorphism restriction is disabled.



To count out that this has something to do with defaulting:



fromFloat :: RealFrac a => Float -> a
q :: RealFrac a => a
q = fromFloat q
q' = fromFloat q'


GHCi> :t q
q :: RealFrac a => a
GHCi> :t q'
q' :: Float


Why is the polymorphic type not inferred?










share|improve this question
























  • Doesn't the monomorphism restriction apply only to simple bindings anyways (and w' = fromInteger w', being recursive, is not simple)?

    – Alec
    2 days ago











  • @Alec possible, but still – why does something like the monomorphism restriction seem to kick in here?

    – leftaroundabout
    2 days ago











  • I'm probably being dense and missing something here, but fromInteger has type (Num a) => Integer -> a, and since w' is used as the input to fromInteger, doesn't that mean Integer is the only possible type for it? Indeed I'm rather surprised that the version with the polymorphic type signature compiles. (So as I said, probably missing something.)

    – Robin Zigmond
    2 days ago











  • @RobinZigmond Integer is certainly the only possible monomorphic type for w', but as w demonstrates a polymorphic type is perfectly fine as well. After all, a polymorphic type can be instantiated to a monomorphic one, provided it fulfills the constraints.

    – leftaroundabout
    2 days ago














16












16








16


2






This was prompted by Resolving the type of `f = f (<*>) pure`, which discusses a more complicated example, but this one works too.



The following definition compiles without problem:



w :: Integral a => a
w = fromInteger w


...Of course it doesn't work runtime-wise, but that's beside the question. The point is that the definition of w itself uses a specialised version of w :: Integer. Clearly that is a suitable instantiation, and therefore typechecks.



However, if we remove the signature, then GHC infers not the above type, but only the concrete one:



w' = fromInteger w'


GHCi> :t w
w :: Integral a => a
GHCi> :t w'
w' :: Integer


Well, when I saw this, I was fairly sure this was the monomorphism restriction at work. It's well known that also e.g.



i = 3


GHCi> :t i
i :: Integer


although i :: Num p => p would be perfectly possible. And indeed, i :: Num p => p is inferred if -XNoMonomorphismRestriction is active, i.e. if the monomorphism restriction is disabled.



However, in case of w' only the type Integer is inferred even when the monomorphism restriction is disabled.



To count out that this has something to do with defaulting:



fromFloat :: RealFrac a => Float -> a
q :: RealFrac a => a
q = fromFloat q
q' = fromFloat q'


GHCi> :t q
q :: RealFrac a => a
GHCi> :t q'
q' :: Float


Why is the polymorphic type not inferred?










share|improve this question
















This was prompted by Resolving the type of `f = f (<*>) pure`, which discusses a more complicated example, but this one works too.



The following definition compiles without problem:



w :: Integral a => a
w = fromInteger w


...Of course it doesn't work runtime-wise, but that's beside the question. The point is that the definition of w itself uses a specialised version of w :: Integer. Clearly that is a suitable instantiation, and therefore typechecks.



However, if we remove the signature, then GHC infers not the above type, but only the concrete one:



w' = fromInteger w'


GHCi> :t w
w :: Integral a => a
GHCi> :t w'
w' :: Integer


Well, when I saw this, I was fairly sure this was the monomorphism restriction at work. It's well known that also e.g.



i = 3


GHCi> :t i
i :: Integer


although i :: Num p => p would be perfectly possible. And indeed, i :: Num p => p is inferred if -XNoMonomorphismRestriction is active, i.e. if the monomorphism restriction is disabled.



However, in case of w' only the type Integer is inferred even when the monomorphism restriction is disabled.



To count out that this has something to do with defaulting:



fromFloat :: RealFrac a => Float -> a
q :: RealFrac a => a
q = fromFloat q
q' = fromFloat q'


GHCi> :t q
q :: RealFrac a => a
GHCi> :t q'
q' :: Float


Why is the polymorphic type not inferred?







haskell recursion type-inference parametric-polymorphism






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 2 days ago







leftaroundabout

















asked 2 days ago









leftaroundaboutleftaroundabout

80.2k3119237




80.2k3119237












  • Doesn't the monomorphism restriction apply only to simple bindings anyways (and w' = fromInteger w', being recursive, is not simple)?

    – Alec
    2 days ago











  • @Alec possible, but still – why does something like the monomorphism restriction seem to kick in here?

    – leftaroundabout
    2 days ago











  • I'm probably being dense and missing something here, but fromInteger has type (Num a) => Integer -> a, and since w' is used as the input to fromInteger, doesn't that mean Integer is the only possible type for it? Indeed I'm rather surprised that the version with the polymorphic type signature compiles. (So as I said, probably missing something.)

    – Robin Zigmond
    2 days ago











  • @RobinZigmond Integer is certainly the only possible monomorphic type for w', but as w demonstrates a polymorphic type is perfectly fine as well. After all, a polymorphic type can be instantiated to a monomorphic one, provided it fulfills the constraints.

    – leftaroundabout
    2 days ago


















  • Doesn't the monomorphism restriction apply only to simple bindings anyways (and w' = fromInteger w', being recursive, is not simple)?

    – Alec
    2 days ago











  • @Alec possible, but still – why does something like the monomorphism restriction seem to kick in here?

    – leftaroundabout
    2 days ago











  • I'm probably being dense and missing something here, but fromInteger has type (Num a) => Integer -> a, and since w' is used as the input to fromInteger, doesn't that mean Integer is the only possible type for it? Indeed I'm rather surprised that the version with the polymorphic type signature compiles. (So as I said, probably missing something.)

    – Robin Zigmond
    2 days ago











  • @RobinZigmond Integer is certainly the only possible monomorphic type for w', but as w demonstrates a polymorphic type is perfectly fine as well. After all, a polymorphic type can be instantiated to a monomorphic one, provided it fulfills the constraints.

    – leftaroundabout
    2 days ago

















Doesn't the monomorphism restriction apply only to simple bindings anyways (and w' = fromInteger w', being recursive, is not simple)?

– Alec
2 days ago





Doesn't the monomorphism restriction apply only to simple bindings anyways (and w' = fromInteger w', being recursive, is not simple)?

– Alec
2 days ago













@Alec possible, but still – why does something like the monomorphism restriction seem to kick in here?

– leftaroundabout
2 days ago





@Alec possible, but still – why does something like the monomorphism restriction seem to kick in here?

– leftaroundabout
2 days ago













I'm probably being dense and missing something here, but fromInteger has type (Num a) => Integer -> a, and since w' is used as the input to fromInteger, doesn't that mean Integer is the only possible type for it? Indeed I'm rather surprised that the version with the polymorphic type signature compiles. (So as I said, probably missing something.)

– Robin Zigmond
2 days ago





I'm probably being dense and missing something here, but fromInteger has type (Num a) => Integer -> a, and since w' is used as the input to fromInteger, doesn't that mean Integer is the only possible type for it? Indeed I'm rather surprised that the version with the polymorphic type signature compiles. (So as I said, probably missing something.)

– Robin Zigmond
2 days ago













@RobinZigmond Integer is certainly the only possible monomorphic type for w', but as w demonstrates a polymorphic type is perfectly fine as well. After all, a polymorphic type can be instantiated to a monomorphic one, provided it fulfills the constraints.

– leftaroundabout
2 days ago






@RobinZigmond Integer is certainly the only possible monomorphic type for w', but as w demonstrates a polymorphic type is perfectly fine as well. After all, a polymorphic type can be instantiated to a monomorphic one, provided it fulfills the constraints.

– leftaroundabout
2 days ago













1 Answer
1






active

oldest

votes


















19














Polymorphic recursion (where a function calls itself at a different type than the one at which it was called) always requires a type signature. The full explanation is in Section 4.4.1 of the Haskell 2010 Report:




If a variable f is defined without providing a corresponding type signature declaration, then each use of f outside its own declaration group (see Section 4.5) is treated as having the corresponding inferred, or principal type. However, to ensure that type inference is still possible, the defining occurrence, and all uses of f within its declaration group must have the same monomorphic type (from which the principal type is obtained by generalization, as described in Section 4.5.2).




The same section later presents an example of polymorphic recursion supported by a type signature.



My understanding is that unaided type inference is generally undecidable in the presence of polymorphic recursion, so Haskell doesn't even try.



In this case, the type checker starts with



w :: a


where a is a meta-variable. Since fromInteger is called with w as an argument within its own declaration (and therefore within its declaration group), the type checker unifies a with Integer. There are no variables left to generalize.



A slight modification of your program gives a different result for the same reason:



v = fromIntegral v


By your original reasoning, Haskell would infer v :: forall a. Num a => a, defaulting the v on the RHS to type Integer:



v :: forall a. Num a => a
v = fromIntegral (v :: Integer)


But instead, it starts with v :: a. Since v is passed to fromIntegral, it imposes Integral a. Finally, it generalizes a. In the end, the program turns out to be



v :: forall a. Integral a => a
v = fromIntegral (v :: a)





share|improve this answer




















  • 2





    My bachelor was about a simple type inferencer for a subset of Haskell including typeclasses & polymorphic recursion. A very simple approach is to limit the depth of the polymorphic recursion up to k depth. Most useful cases of polymorphic recursion can be inferred with a very low depth bound (like k=1 or k=2). Anyway Haskell type inference is already undecidable so that's not the only reason why it's not allowed. An other reason is probably performance, it surely makes type inference O(k·f(n)) instead of O(f(n)) since you may need to do all over again for k times.

    – Bakuriu
    2 days ago






  • 2





    @Bakuriu, I am pretty sure that Haskell 2010 without polymorphic recursion has full type inference--it's basically Hindley-Milner at that point, plus type classes and defaulting. Do you have a reference saying otherwise? As for some limited recursion depth: that sounds like a potentially useful extension, but it has a very different flavor from what the Haskell Report tends to do. I would find such a feature most useful for discovering the right type signatures for polymorphic recursive code.

    – dfeuer
    2 days ago












  • Yes, but I think all extensions to the type systems on top of Haskell2010 make type inference undecidable. Note that for example Type families are "artificially" limited to avoid undecidable instances by forbidding certain well-formed programs by default, so allowing a "k-recursive" polymorphic recursion would not be very different from that case, IMHO.

    – Bakuriu
    2 days ago











  • @Bakuriu, just for my own curiosity: how much of Data.Sequence could be inferred with bounded polymorphic recursion depth? I'm not quite sure what you mean when you say "depth" in this context.

    – dfeuer
    2 days ago






  • 1





    The reason there is no inference for polymorphic recursion is exactly because it’s undecidable. This is a decision from long before ghc gained a lot of other undecidable features. You can trust me on this one, I was on the Haskell committee at that point. :)

    – augustss
    yesterday











Your Answer






StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55402733%2fwhy-does-ghc-infer-a-monomorphic-type-here-even-with-monomorphismrestriction-di%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









19














Polymorphic recursion (where a function calls itself at a different type than the one at which it was called) always requires a type signature. The full explanation is in Section 4.4.1 of the Haskell 2010 Report:




If a variable f is defined without providing a corresponding type signature declaration, then each use of f outside its own declaration group (see Section 4.5) is treated as having the corresponding inferred, or principal type. However, to ensure that type inference is still possible, the defining occurrence, and all uses of f within its declaration group must have the same monomorphic type (from which the principal type is obtained by generalization, as described in Section 4.5.2).




The same section later presents an example of polymorphic recursion supported by a type signature.



My understanding is that unaided type inference is generally undecidable in the presence of polymorphic recursion, so Haskell doesn't even try.



In this case, the type checker starts with



w :: a


where a is a meta-variable. Since fromInteger is called with w as an argument within its own declaration (and therefore within its declaration group), the type checker unifies a with Integer. There are no variables left to generalize.



A slight modification of your program gives a different result for the same reason:



v = fromIntegral v


By your original reasoning, Haskell would infer v :: forall a. Num a => a, defaulting the v on the RHS to type Integer:



v :: forall a. Num a => a
v = fromIntegral (v :: Integer)


But instead, it starts with v :: a. Since v is passed to fromIntegral, it imposes Integral a. Finally, it generalizes a. In the end, the program turns out to be



v :: forall a. Integral a => a
v = fromIntegral (v :: a)





share|improve this answer




















  • 2





    My bachelor was about a simple type inferencer for a subset of Haskell including typeclasses & polymorphic recursion. A very simple approach is to limit the depth of the polymorphic recursion up to k depth. Most useful cases of polymorphic recursion can be inferred with a very low depth bound (like k=1 or k=2). Anyway Haskell type inference is already undecidable so that's not the only reason why it's not allowed. An other reason is probably performance, it surely makes type inference O(k·f(n)) instead of O(f(n)) since you may need to do all over again for k times.

    – Bakuriu
    2 days ago






  • 2





    @Bakuriu, I am pretty sure that Haskell 2010 without polymorphic recursion has full type inference--it's basically Hindley-Milner at that point, plus type classes and defaulting. Do you have a reference saying otherwise? As for some limited recursion depth: that sounds like a potentially useful extension, but it has a very different flavor from what the Haskell Report tends to do. I would find such a feature most useful for discovering the right type signatures for polymorphic recursive code.

    – dfeuer
    2 days ago












  • Yes, but I think all extensions to the type systems on top of Haskell2010 make type inference undecidable. Note that for example Type families are "artificially" limited to avoid undecidable instances by forbidding certain well-formed programs by default, so allowing a "k-recursive" polymorphic recursion would not be very different from that case, IMHO.

    – Bakuriu
    2 days ago











  • @Bakuriu, just for my own curiosity: how much of Data.Sequence could be inferred with bounded polymorphic recursion depth? I'm not quite sure what you mean when you say "depth" in this context.

    – dfeuer
    2 days ago






  • 1





    The reason there is no inference for polymorphic recursion is exactly because it’s undecidable. This is a decision from long before ghc gained a lot of other undecidable features. You can trust me on this one, I was on the Haskell committee at that point. :)

    – augustss
    yesterday















19














Polymorphic recursion (where a function calls itself at a different type than the one at which it was called) always requires a type signature. The full explanation is in Section 4.4.1 of the Haskell 2010 Report:




If a variable f is defined without providing a corresponding type signature declaration, then each use of f outside its own declaration group (see Section 4.5) is treated as having the corresponding inferred, or principal type. However, to ensure that type inference is still possible, the defining occurrence, and all uses of f within its declaration group must have the same monomorphic type (from which the principal type is obtained by generalization, as described in Section 4.5.2).




The same section later presents an example of polymorphic recursion supported by a type signature.



My understanding is that unaided type inference is generally undecidable in the presence of polymorphic recursion, so Haskell doesn't even try.



In this case, the type checker starts with



w :: a


where a is a meta-variable. Since fromInteger is called with w as an argument within its own declaration (and therefore within its declaration group), the type checker unifies a with Integer. There are no variables left to generalize.



A slight modification of your program gives a different result for the same reason:



v = fromIntegral v


By your original reasoning, Haskell would infer v :: forall a. Num a => a, defaulting the v on the RHS to type Integer:



v :: forall a. Num a => a
v = fromIntegral (v :: Integer)


But instead, it starts with v :: a. Since v is passed to fromIntegral, it imposes Integral a. Finally, it generalizes a. In the end, the program turns out to be



v :: forall a. Integral a => a
v = fromIntegral (v :: a)





share|improve this answer




















  • 2





    My bachelor was about a simple type inferencer for a subset of Haskell including typeclasses & polymorphic recursion. A very simple approach is to limit the depth of the polymorphic recursion up to k depth. Most useful cases of polymorphic recursion can be inferred with a very low depth bound (like k=1 or k=2). Anyway Haskell type inference is already undecidable so that's not the only reason why it's not allowed. An other reason is probably performance, it surely makes type inference O(k·f(n)) instead of O(f(n)) since you may need to do all over again for k times.

    – Bakuriu
    2 days ago






  • 2





    @Bakuriu, I am pretty sure that Haskell 2010 without polymorphic recursion has full type inference--it's basically Hindley-Milner at that point, plus type classes and defaulting. Do you have a reference saying otherwise? As for some limited recursion depth: that sounds like a potentially useful extension, but it has a very different flavor from what the Haskell Report tends to do. I would find such a feature most useful for discovering the right type signatures for polymorphic recursive code.

    – dfeuer
    2 days ago












  • Yes, but I think all extensions to the type systems on top of Haskell2010 make type inference undecidable. Note that for example Type families are "artificially" limited to avoid undecidable instances by forbidding certain well-formed programs by default, so allowing a "k-recursive" polymorphic recursion would not be very different from that case, IMHO.

    – Bakuriu
    2 days ago











  • @Bakuriu, just for my own curiosity: how much of Data.Sequence could be inferred with bounded polymorphic recursion depth? I'm not quite sure what you mean when you say "depth" in this context.

    – dfeuer
    2 days ago






  • 1





    The reason there is no inference for polymorphic recursion is exactly because it’s undecidable. This is a decision from long before ghc gained a lot of other undecidable features. You can trust me on this one, I was on the Haskell committee at that point. :)

    – augustss
    yesterday













19












19








19







Polymorphic recursion (where a function calls itself at a different type than the one at which it was called) always requires a type signature. The full explanation is in Section 4.4.1 of the Haskell 2010 Report:




If a variable f is defined without providing a corresponding type signature declaration, then each use of f outside its own declaration group (see Section 4.5) is treated as having the corresponding inferred, or principal type. However, to ensure that type inference is still possible, the defining occurrence, and all uses of f within its declaration group must have the same monomorphic type (from which the principal type is obtained by generalization, as described in Section 4.5.2).




The same section later presents an example of polymorphic recursion supported by a type signature.



My understanding is that unaided type inference is generally undecidable in the presence of polymorphic recursion, so Haskell doesn't even try.



In this case, the type checker starts with



w :: a


where a is a meta-variable. Since fromInteger is called with w as an argument within its own declaration (and therefore within its declaration group), the type checker unifies a with Integer. There are no variables left to generalize.



A slight modification of your program gives a different result for the same reason:



v = fromIntegral v


By your original reasoning, Haskell would infer v :: forall a. Num a => a, defaulting the v on the RHS to type Integer:



v :: forall a. Num a => a
v = fromIntegral (v :: Integer)


But instead, it starts with v :: a. Since v is passed to fromIntegral, it imposes Integral a. Finally, it generalizes a. In the end, the program turns out to be



v :: forall a. Integral a => a
v = fromIntegral (v :: a)





share|improve this answer















Polymorphic recursion (where a function calls itself at a different type than the one at which it was called) always requires a type signature. The full explanation is in Section 4.4.1 of the Haskell 2010 Report:




If a variable f is defined without providing a corresponding type signature declaration, then each use of f outside its own declaration group (see Section 4.5) is treated as having the corresponding inferred, or principal type. However, to ensure that type inference is still possible, the defining occurrence, and all uses of f within its declaration group must have the same monomorphic type (from which the principal type is obtained by generalization, as described in Section 4.5.2).




The same section later presents an example of polymorphic recursion supported by a type signature.



My understanding is that unaided type inference is generally undecidable in the presence of polymorphic recursion, so Haskell doesn't even try.



In this case, the type checker starts with



w :: a


where a is a meta-variable. Since fromInteger is called with w as an argument within its own declaration (and therefore within its declaration group), the type checker unifies a with Integer. There are no variables left to generalize.



A slight modification of your program gives a different result for the same reason:



v = fromIntegral v


By your original reasoning, Haskell would infer v :: forall a. Num a => a, defaulting the v on the RHS to type Integer:



v :: forall a. Num a => a
v = fromIntegral (v :: Integer)


But instead, it starts with v :: a. Since v is passed to fromIntegral, it imposes Integral a. Finally, it generalizes a. In the end, the program turns out to be



v :: forall a. Integral a => a
v = fromIntegral (v :: a)






share|improve this answer














share|improve this answer



share|improve this answer








edited 2 days ago

























answered 2 days ago









dfeuerdfeuer

33.6k349133




33.6k349133







  • 2





    My bachelor was about a simple type inferencer for a subset of Haskell including typeclasses & polymorphic recursion. A very simple approach is to limit the depth of the polymorphic recursion up to k depth. Most useful cases of polymorphic recursion can be inferred with a very low depth bound (like k=1 or k=2). Anyway Haskell type inference is already undecidable so that's not the only reason why it's not allowed. An other reason is probably performance, it surely makes type inference O(k·f(n)) instead of O(f(n)) since you may need to do all over again for k times.

    – Bakuriu
    2 days ago






  • 2





    @Bakuriu, I am pretty sure that Haskell 2010 without polymorphic recursion has full type inference--it's basically Hindley-Milner at that point, plus type classes and defaulting. Do you have a reference saying otherwise? As for some limited recursion depth: that sounds like a potentially useful extension, but it has a very different flavor from what the Haskell Report tends to do. I would find such a feature most useful for discovering the right type signatures for polymorphic recursive code.

    – dfeuer
    2 days ago












  • Yes, but I think all extensions to the type systems on top of Haskell2010 make type inference undecidable. Note that for example Type families are "artificially" limited to avoid undecidable instances by forbidding certain well-formed programs by default, so allowing a "k-recursive" polymorphic recursion would not be very different from that case, IMHO.

    – Bakuriu
    2 days ago











  • @Bakuriu, just for my own curiosity: how much of Data.Sequence could be inferred with bounded polymorphic recursion depth? I'm not quite sure what you mean when you say "depth" in this context.

    – dfeuer
    2 days ago






  • 1





    The reason there is no inference for polymorphic recursion is exactly because it’s undecidable. This is a decision from long before ghc gained a lot of other undecidable features. You can trust me on this one, I was on the Haskell committee at that point. :)

    – augustss
    yesterday












  • 2





    My bachelor was about a simple type inferencer for a subset of Haskell including typeclasses & polymorphic recursion. A very simple approach is to limit the depth of the polymorphic recursion up to k depth. Most useful cases of polymorphic recursion can be inferred with a very low depth bound (like k=1 or k=2). Anyway Haskell type inference is already undecidable so that's not the only reason why it's not allowed. An other reason is probably performance, it surely makes type inference O(k·f(n)) instead of O(f(n)) since you may need to do all over again for k times.

    – Bakuriu
    2 days ago






  • 2





    @Bakuriu, I am pretty sure that Haskell 2010 without polymorphic recursion has full type inference--it's basically Hindley-Milner at that point, plus type classes and defaulting. Do you have a reference saying otherwise? As for some limited recursion depth: that sounds like a potentially useful extension, but it has a very different flavor from what the Haskell Report tends to do. I would find such a feature most useful for discovering the right type signatures for polymorphic recursive code.

    – dfeuer
    2 days ago












  • Yes, but I think all extensions to the type systems on top of Haskell2010 make type inference undecidable. Note that for example Type families are "artificially" limited to avoid undecidable instances by forbidding certain well-formed programs by default, so allowing a "k-recursive" polymorphic recursion would not be very different from that case, IMHO.

    – Bakuriu
    2 days ago











  • @Bakuriu, just for my own curiosity: how much of Data.Sequence could be inferred with bounded polymorphic recursion depth? I'm not quite sure what you mean when you say "depth" in this context.

    – dfeuer
    2 days ago






  • 1





    The reason there is no inference for polymorphic recursion is exactly because it’s undecidable. This is a decision from long before ghc gained a lot of other undecidable features. You can trust me on this one, I was on the Haskell committee at that point. :)

    – augustss
    yesterday







2




2





My bachelor was about a simple type inferencer for a subset of Haskell including typeclasses & polymorphic recursion. A very simple approach is to limit the depth of the polymorphic recursion up to k depth. Most useful cases of polymorphic recursion can be inferred with a very low depth bound (like k=1 or k=2). Anyway Haskell type inference is already undecidable so that's not the only reason why it's not allowed. An other reason is probably performance, it surely makes type inference O(k·f(n)) instead of O(f(n)) since you may need to do all over again for k times.

– Bakuriu
2 days ago





My bachelor was about a simple type inferencer for a subset of Haskell including typeclasses & polymorphic recursion. A very simple approach is to limit the depth of the polymorphic recursion up to k depth. Most useful cases of polymorphic recursion can be inferred with a very low depth bound (like k=1 or k=2). Anyway Haskell type inference is already undecidable so that's not the only reason why it's not allowed. An other reason is probably performance, it surely makes type inference O(k·f(n)) instead of O(f(n)) since you may need to do all over again for k times.

– Bakuriu
2 days ago




2




2





@Bakuriu, I am pretty sure that Haskell 2010 without polymorphic recursion has full type inference--it's basically Hindley-Milner at that point, plus type classes and defaulting. Do you have a reference saying otherwise? As for some limited recursion depth: that sounds like a potentially useful extension, but it has a very different flavor from what the Haskell Report tends to do. I would find such a feature most useful for discovering the right type signatures for polymorphic recursive code.

– dfeuer
2 days ago






@Bakuriu, I am pretty sure that Haskell 2010 without polymorphic recursion has full type inference--it's basically Hindley-Milner at that point, plus type classes and defaulting. Do you have a reference saying otherwise? As for some limited recursion depth: that sounds like a potentially useful extension, but it has a very different flavor from what the Haskell Report tends to do. I would find such a feature most useful for discovering the right type signatures for polymorphic recursive code.

– dfeuer
2 days ago














Yes, but I think all extensions to the type systems on top of Haskell2010 make type inference undecidable. Note that for example Type families are "artificially" limited to avoid undecidable instances by forbidding certain well-formed programs by default, so allowing a "k-recursive" polymorphic recursion would not be very different from that case, IMHO.

– Bakuriu
2 days ago





Yes, but I think all extensions to the type systems on top of Haskell2010 make type inference undecidable. Note that for example Type families are "artificially" limited to avoid undecidable instances by forbidding certain well-formed programs by default, so allowing a "k-recursive" polymorphic recursion would not be very different from that case, IMHO.

– Bakuriu
2 days ago













@Bakuriu, just for my own curiosity: how much of Data.Sequence could be inferred with bounded polymorphic recursion depth? I'm not quite sure what you mean when you say "depth" in this context.

– dfeuer
2 days ago





@Bakuriu, just for my own curiosity: how much of Data.Sequence could be inferred with bounded polymorphic recursion depth? I'm not quite sure what you mean when you say "depth" in this context.

– dfeuer
2 days ago




1




1





The reason there is no inference for polymorphic recursion is exactly because it’s undecidable. This is a decision from long before ghc gained a lot of other undecidable features. You can trust me on this one, I was on the Haskell committee at that point. :)

– augustss
yesterday





The reason there is no inference for polymorphic recursion is exactly because it’s undecidable. This is a decision from long before ghc gained a lot of other undecidable features. You can trust me on this one, I was on the Haskell committee at that point. :)

– augustss
yesterday



















draft saved

draft discarded
















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55402733%2fwhy-does-ghc-infer-a-monomorphic-type-here-even-with-monomorphismrestriction-di%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

getting Checkpoint VPN SSL Network Extender working in the command lineHow to connect to CheckPoint VPN on Ubuntu 18.04LTS?Will the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayVPN SSL Network Extender in FirefoxLinux Checkpoint SNX tool configuration issuesCheck Point - Connect under Linux - snx + OTPSNX VPN Ububuntu 18.XXUsing Checkpoint VPN SSL Network Extender CLI with certificateVPN with network manager (nm-applet) is not workingWill the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayImport VPN config files to NetworkManager from command lineTrouble connecting to VPN using network-manager, while command line worksStart a VPN connection with PPTP protocol on command linestarting a docker service daemon breaks the vpn networkCan't connect to vpn with Network-managerVPN SSL Network Extender in FirefoxUsing Checkpoint VPN SSL Network Extender CLI with certificate

NetworkManager fails with “Could not find source connection”Trouble connecting to VPN using network-manager, while command line worksHow can I be notified about state changes to a VPN adapterBacktrack 5 R3 - Refuses to connect to VPNFeed all traffic through OpenVPN for a specific network namespace onlyRun daemon on startup in Debian once openvpn connection establishedpfsense tcp connection between openvpn and lan is brokenInternet connection problem with web browsers onlyWhy does NetworkManager explicitly support tun/tap devices?Browser issues with VPNTwo IP addresses assigned to the same network card - OpenVPN issues?Cannot connect to WiFi with nmcli, although secrets are provided

대한민국 목차 국명 지리 역사 정치 국방 경제 사회 문화 국제 순위 관련 항목 각주 외부 링크 둘러보기 메뉴북위 37° 34′ 08″ 동경 126° 58′ 36″ / 북위 37.568889° 동경 126.976667°  / 37.568889; 126.976667ehThe Korean Repository문단을 편집문단을 편집추가해Clarkson PLC 사Report for Selected Countries and Subjects-Korea“Human Development Index and its components: P.198”“http://www.law.go.kr/%EB%B2%95%EB%A0%B9/%EB%8C%80%ED%95%9C%EB%AF%BC%EA%B5%AD%EA%B5%AD%EA%B8%B0%EB%B2%95”"한국은 국제법상 한반도 유일 합법정부 아니다" - 오마이뉴스 모바일Report for Selected Countries and Subjects: South Korea격동의 역사와 함께한 조선일보 90년 : 조선일보 인수해 혁신시킨 신석우, 임시정부 때는 '대한민국' 국호(國號) 정해《우리가 몰랐던 우리 역사: 나라 이름의 비밀을 찾아가는 역사 여행》“남북 공식호칭 ‘남한’‘북한’으로 쓴다”“Corea 대 Korea, 누가 이긴 거야?”국내기후자료 - 한국[김대중 前 대통령 서거] 과감한 구조개혁 'DJ노믹스'로 최단기간 환란극복 :: 네이버 뉴스“이라크 "韓-쿠르드 유전개발 MOU 승인 안해"(종합)”“해외 우리국민 추방사례 43%가 일본”차기전차 K2'흑표'의 세계 최고 전력 분석, 쿠키뉴스 엄기영, 2007-03-02두산인프라, 헬기잡는 장갑차 'K21'...내년부터 공급, 고뉴스 이대준, 2008-10-30과거 내용 찾기mk 뉴스 - 구매력 기준으로 보면 한국 1인당 소득 3만弗과거 내용 찾기"The N-11: More Than an Acronym"Archived조선일보 최우석, 2008-11-01Global 500 2008: Countries - South Korea“몇년째 '시한폭탄'... 가계부채, 올해는 터질까”가구당 부채 5000만원 처음 넘어서“‘빚’으로 내몰리는 사회.. 위기의 가계대출”“[경제365] 공공부문 부채 급증…800조 육박”“"소득 양극화 다소 완화...불평등은 여전"”“공정사회·공생발전 한참 멀었네”iSuppli,08年2QのDRAMシェア・ランキングを発表(08/8/11)South Korea dominates shipbuilding industry | Stock Market News & Stocks to Watch from StraightStocks한국 자동차 생산, 3년 연속 세계 5위자동차수출 '현대-삼성 웃고 기아-대우-쌍용은 울고' 과거 내용 찾기동반성장위 창립 1주년 맞아Archived"중기적합 3개업종 합의 무시한 채 선정"李대통령, 사업 무분별 확장 소상공인 생계 위협 질타삼성-LG, 서민업종인 빵·분식사업 잇따라 철수상생은 뒷전…SSM ‘몸집 불리기’ 혈안Archived“경부고속도에 '아시안하이웨이' 표지판”'철의 실크로드' 앞서 '말(言)의 실크로드'부터, 프레시안 정창현, 2008-10-01“'서울 지하철은 안전한가?'”“서울시 “올해 안에 모든 지하철역 스크린도어 설치””“부산지하철 1,2호선 승강장 안전펜스 설치 완료”“전교조, 정부 노조 통계서 처음 빠져”“[Weekly BIZ] 도요타 '제로 이사회'가 리콜 사태 불러들였다”“S Korea slams high tuition costs”““정치가 여론 양극화 부채질… 합리주의 절실””“〈"`촛불집회'는 민주주의의 질적 변화 상징"〉”““촛불집회가 민주주의 왜곡 초래””“국민 65%, "한국 노사관계 대립적"”“한국 국가경쟁력 27위‥노사관계 '꼴찌'”“제대로 형성되지 않은 대한민국 이념지형”“[신년기획-갈등의 시대] 갈등지수 OECD 4위…사회적 손실 GDP 27% 무려 300조”“2012 총선-대선의 키워드는 '국민과 소통'”“한국 삶의 질 27위, 2000년과 2008년 연속 하위권 머물러”“[해피 코리아] 행복점수 68점…해외 평가선 '낙제점'”“한국 어린이·청소년 행복지수 3년 연속 OECD ‘꼴찌’”“한국 이혼율 OECD중 8위”“[통계청] 한국 이혼율 OECD 4위”“오피니언 [이렇게 생각한다] `부부의 날` 에 돌아본 이혼율 1위 한국”“Suicide Rates by Country, Global Health Observatory Data Repository.”“1. 또 다른 차별”“오피니언 [편집자에게] '왕따'와 '패거리 정치' 심리는 닮은꼴”“[미래한국리포트] 무한경쟁에 빠진 대한민국”“대학생 98% "외모가 경쟁력이라는 말 동의"”“특급호텔 웨딩·200만원대 유모차… "남보다 더…" 호화病, 고질병 됐다”“[스트레스 공화국] ① 경쟁사회, 스트레스 쌓인다”““매일 30여명 자살 한국, 의사보다 무속인에…””“"자살 부르는 '우울증', 환자 중 85% 치료 안 받아"”“정신병원을 가다”“대한민국도 ‘묻지마 범죄’,안전지대 아니다”“유엔 "학생 '성적 지향'에 따른 차별 금지하라"”“유엔아동권리위원회 보고서 및 번역본 원문”“고졸 성공스토리 담은 '제빵왕 김탁구' 드라마 나온다”“‘빛 좋은 개살구’ 고졸 취업…실습 대신 착취”원본 문서“정신건강, 사회적 편견부터 고쳐드립니다”‘소통’과 ‘행복’에 목 마른 사회가 잠들어 있던 ‘심리학’ 깨웠다“[포토] 사유리-곽금주 교수의 유쾌한 심리상담”“"올해 한국인 평균 영화관람횟수 세계 1위"(종합)”“[게임연중기획] 게임은 문화다-여가활동 1순위 게임”“영화속 ‘영어 지상주의’ …“왠지 씁쓸한데””“2월 `신문 부수 인증기관` 지정..방송법 후속작업”“무료신문 성장동력 ‘차별성’과 ‘갈등해소’”대한민국 국회 법률지식정보시스템"Pew Research Center's Religion & Public Life Project: South Korea"“amp;vwcd=MT_ZTITLE&path=인구·가구%20>%20인구총조사%20>%20인구부문%20>%20 총조사인구(2005)%20>%20전수부문&oper_YN=Y&item=&keyword=종교별%20인구& amp;lang_mode=kor&list_id= 2005년 통계청 인구 총조사”원본 문서“한국인이 좋아하는 취미와 운동 (2004-2009)”“한국인이 좋아하는 취미와 운동 (2004-2014)”Archived“한국, `부분적 언론자유국' 강등〈프리덤하우스〉”“국경없는기자회 "한국, 인터넷감시 대상국"”“한국, 조선산업 1위 유지(S. Korea Stays Top Shipbuilding Nation) RZD-Partner Portal”원본 문서“한국, 4년 만에 ‘선박건조 1위’”“옛 마산시,인터넷속도 세계 1위”“"한국 초고속 인터넷망 세계1위"”“인터넷·휴대폰 요금, 외국보다 훨씬 비싸”“한국 관세행정 6년 연속 세계 '1위'”“한국 교통사고 사망자 수 OECD 회원국 중 2위”“결핵 후진국' 한국, 환자가 급증한 이유는”“수술은 신중해야… 자칫하면 생명 위협”대한민국분류대한민국의 지도대한민국 정부대표 다국어포털대한민국 전자정부대한민국 국회한국방송공사about korea and information korea브리태니커 백과사전(한국편)론리플래닛의 정보(한국편)CIA의 세계 정보(한국편)마리암 부디아 (Mariam Budia),『한국: 하늘이 내린 한 폭의 그림』, 서울: 트랜스라틴 19호 (2012년 3월)대한민국ehehehehehehehehehehehehehehWorldCat132441370n791268020000 0001 2308 81034078029-6026373548cb11863345f(데이터)00573706ge128495