Proving $f(x)=|x|$ is ontoDetermining if Function is 1:1 or OntoProving a bijection(injection and surjection) over a functionRigorous proof that surjectivity implies injectivity for finite setsProving continuity on Sobolev space with weak topologyProving or Disproving a function that is onto itself is one to one.How to prove $f(n)=lceilfracn2rceil$ is one-to-one and onto?Onto functions from Power set of Naturals$f(y)geq f(x)rightarrow (y-x)geq0$ in $mathbbR^2_+$ if weakly increasing?Is $f(x) = 3 -frac2x$ injective or surjective?Prove a function is onto if its domain is a Cartesian product

In Star Trek IV, why did the Bounty go back to a time when whales were already rare?

Why isn't KTEX's runway designation 10/28 instead of 9/27?

Could solar power be utilized and substitute coal in the 19th century?

Can a Gentile theist be saved?

What if somebody invests in my application?

I'm in charge of equipment buying but no one's ever happy with what I choose. How to fix this?

Partial sums of primes

Stereotypical names

How will losing mobility of one hand affect my career as a programmer?

Have I saved too much for retirement so far?

Teaching indefinite integrals that require special-casing

Is a naturally all "male" species possible?

Can I use my Chinese passport to enter China after I acquired another citizenship?

Can the electrostatic force be infinite in magnitude?

The One-Electron Universe postulate is true - what simple change can I make to change the whole universe?

What should I use for Mishna study?

Reply ‘no position’ while the job posting is still there (‘HiWi’ position in Germany)

Can I rely on these GitHub repository files?

What do you call the infoboxes with text and sometimes images on the side of a page we find in textbooks?

node command while defining a coordinate in TikZ

Can a malicious addon access internet history and such in chrome/firefox?

Simulating a probability of 1 of 2^N with less than N random bits

A workplace installs custom certificates on personal devices, can this be used to decrypt HTTPS traffic?

Is infinity mathematically observable?



Proving $f(x)=|x|$ is onto


Determining if Function is 1:1 or OntoProving a bijection(injection and surjection) over a functionRigorous proof that surjectivity implies injectivity for finite setsProving continuity on Sobolev space with weak topologyProving or Disproving a function that is onto itself is one to one.How to prove $f(n)=lceilfracn2rceil$ is one-to-one and onto?Onto functions from Power set of Naturals$f(y)geq f(x)rightarrow (y-x)geq0$ in $mathbbR^2_+$ if weakly increasing?Is $f(x) = 3 -frac2x$ injective or surjective?Prove a function is onto if its domain is a Cartesian product













2












$begingroup$


I've been working on proving that this is a onto function:



$f$ : $mathbb R$ $to$ $mathbb R^geq0$ is defined by $f(x)=|x|$



My proof so far: Let $yinmathbb R$.



Rough work: $|x|=y Rightarrow sqrt x^2=y Rightarrow n^2=y^2 Rightarrow pm x=pm y$



Suppose $f(pm y)=|pm y|=y$.



I know that this function is definitely onto given the co-domain of $mathbb R^geq0$, but I feel like my proof is flawed. Am I supposed to individually account for the $-x$ and the $+x$ from $pm x=pm y$ when trying to solve $f(x) = y$?



Thanks!










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Let $ain mathbb R ^geq 0$. Then by definition, $|a|=a$. Therefore, $a$ is in the image of $f:xmapsto |x|$.
    $endgroup$
    – Arrow
    yesterday






  • 6




    $begingroup$
    You proof is wrong from the beginning. You need to assume y is in the nonnegative reals and show you can find a real x that maps to it.
    $endgroup$
    – symplectomorphic
    yesterday















2












$begingroup$


I've been working on proving that this is a onto function:



$f$ : $mathbb R$ $to$ $mathbb R^geq0$ is defined by $f(x)=|x|$



My proof so far: Let $yinmathbb R$.



Rough work: $|x|=y Rightarrow sqrt x^2=y Rightarrow n^2=y^2 Rightarrow pm x=pm y$



Suppose $f(pm y)=|pm y|=y$.



I know that this function is definitely onto given the co-domain of $mathbb R^geq0$, but I feel like my proof is flawed. Am I supposed to individually account for the $-x$ and the $+x$ from $pm x=pm y$ when trying to solve $f(x) = y$?



Thanks!










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Let $ain mathbb R ^geq 0$. Then by definition, $|a|=a$. Therefore, $a$ is in the image of $f:xmapsto |x|$.
    $endgroup$
    – Arrow
    yesterday






  • 6




    $begingroup$
    You proof is wrong from the beginning. You need to assume y is in the nonnegative reals and show you can find a real x that maps to it.
    $endgroup$
    – symplectomorphic
    yesterday













2












2








2


2



$begingroup$


I've been working on proving that this is a onto function:



$f$ : $mathbb R$ $to$ $mathbb R^geq0$ is defined by $f(x)=|x|$



My proof so far: Let $yinmathbb R$.



Rough work: $|x|=y Rightarrow sqrt x^2=y Rightarrow n^2=y^2 Rightarrow pm x=pm y$



Suppose $f(pm y)=|pm y|=y$.



I know that this function is definitely onto given the co-domain of $mathbb R^geq0$, but I feel like my proof is flawed. Am I supposed to individually account for the $-x$ and the $+x$ from $pm x=pm y$ when trying to solve $f(x) = y$?



Thanks!










share|cite|improve this question











$endgroup$




I've been working on proving that this is a onto function:



$f$ : $mathbb R$ $to$ $mathbb R^geq0$ is defined by $f(x)=|x|$



My proof so far: Let $yinmathbb R$.



Rough work: $|x|=y Rightarrow sqrt x^2=y Rightarrow n^2=y^2 Rightarrow pm x=pm y$



Suppose $f(pm y)=|pm y|=y$.



I know that this function is definitely onto given the co-domain of $mathbb R^geq0$, but I feel like my proof is flawed. Am I supposed to individually account for the $-x$ and the $+x$ from $pm x=pm y$ when trying to solve $f(x) = y$?



Thanks!







proof-verification elementary-set-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 18 hours ago









YuiTo Cheng

2,1362837




2,1362837










asked yesterday









Nick SabiaNick Sabia

285




285







  • 1




    $begingroup$
    Let $ain mathbb R ^geq 0$. Then by definition, $|a|=a$. Therefore, $a$ is in the image of $f:xmapsto |x|$.
    $endgroup$
    – Arrow
    yesterday






  • 6




    $begingroup$
    You proof is wrong from the beginning. You need to assume y is in the nonnegative reals and show you can find a real x that maps to it.
    $endgroup$
    – symplectomorphic
    yesterday












  • 1




    $begingroup$
    Let $ain mathbb R ^geq 0$. Then by definition, $|a|=a$. Therefore, $a$ is in the image of $f:xmapsto |x|$.
    $endgroup$
    – Arrow
    yesterday






  • 6




    $begingroup$
    You proof is wrong from the beginning. You need to assume y is in the nonnegative reals and show you can find a real x that maps to it.
    $endgroup$
    – symplectomorphic
    yesterday







1




1




$begingroup$
Let $ain mathbb R ^geq 0$. Then by definition, $|a|=a$. Therefore, $a$ is in the image of $f:xmapsto |x|$.
$endgroup$
– Arrow
yesterday




$begingroup$
Let $ain mathbb R ^geq 0$. Then by definition, $|a|=a$. Therefore, $a$ is in the image of $f:xmapsto |x|$.
$endgroup$
– Arrow
yesterday




6




6




$begingroup$
You proof is wrong from the beginning. You need to assume y is in the nonnegative reals and show you can find a real x that maps to it.
$endgroup$
– symplectomorphic
yesterday




$begingroup$
You proof is wrong from the beginning. You need to assume y is in the nonnegative reals and show you can find a real x that maps to it.
$endgroup$
– symplectomorphic
yesterday










5 Answers
5






active

oldest

votes


















21












$begingroup$

In order to show that the function is onto (surjective) it is enough to argue that for each $y$ in the codomain there is at least one $x$ in the domain that maps to it.



You seem to be trying to find all of the $x$ such that $f(x)=y$, which is more work than you need to do and creates a rather large detour.



You could just say:




Let $yinmathbb R^ge 0$ be given. Then $f(y)=|y|=y$, so by setting $x=y$ we find an $xinmathbb R$ such that $f(x)=y$. Since $y$ was arbitrary this proves that $f$ is surjective.




(Even this is more verbose than it really needs to be, but in exercises at this elementary level it is good to be explicit about the details, to show that you know what you're doing).






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    (+1) Because this is a vey pedagogical answer.
    $endgroup$
    – José Carlos Santos
    yesterday


















4












$begingroup$


Am I supposed to individually account for the -x and the +x from ±x=±y when trying to solve f(x)=y?




No.



You are simply supposed to show that for any general arbitrary $y in mathbb R^ge 0$ that there is, at least (you don't have to find them all), one $xin mathbb R$ so that $|x| = y$.



As $|y| = y$ this is very easy. And you are done.



The proof is two lines:



1) Let $y in mathbb R^ge 0$.



2) $f(y) = |y| = y$.






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    You should not start with $yinmathbb R$ but rather with $yinmathbbR^geqslant0$. Then $y=f(y)$. Since this happens for every $yinmathbbR^geqslant 0$, $f$ is onto.






    share|cite|improve this answer











    $endgroup$




















      0












      $begingroup$

      Well, you want to show that $f$ is onto. So take an arbitrary element $yinBbb R_geq 0$ from the image set and find a preimage. Here a preimage is $y$ itself or even $-y$, since $|-y|=y$.






      share|cite|improve this answer









      $endgroup$




















        0












        $begingroup$

        More generally, If $B subseteq A$ and $f: A rightarrow B$ is a continuous mapping with $f(b) = b$ for all $b in B$ then $f$ is called a retraction of $A$ onto $B$. It is trivial that any such $f$ is onto since $f(b) = b$ for all $b in B$ immediately implies that all such $b$ are in the range. Note that continuity really plays no role in this. Thinking of $|x|$ as a retraction is perhaps overkill, but shows that the proof that it is onto the nonnegative reals is a special case of a more general (and equally easy to prove) result.






        share|cite|improve this answer









        $endgroup$












          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160658%2fproving-fx-x-is-onto%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          5 Answers
          5






          active

          oldest

          votes








          5 Answers
          5






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          21












          $begingroup$

          In order to show that the function is onto (surjective) it is enough to argue that for each $y$ in the codomain there is at least one $x$ in the domain that maps to it.



          You seem to be trying to find all of the $x$ such that $f(x)=y$, which is more work than you need to do and creates a rather large detour.



          You could just say:




          Let $yinmathbb R^ge 0$ be given. Then $f(y)=|y|=y$, so by setting $x=y$ we find an $xinmathbb R$ such that $f(x)=y$. Since $y$ was arbitrary this proves that $f$ is surjective.




          (Even this is more verbose than it really needs to be, but in exercises at this elementary level it is good to be explicit about the details, to show that you know what you're doing).






          share|cite|improve this answer









          $endgroup$








          • 1




            $begingroup$
            (+1) Because this is a vey pedagogical answer.
            $endgroup$
            – José Carlos Santos
            yesterday















          21












          $begingroup$

          In order to show that the function is onto (surjective) it is enough to argue that for each $y$ in the codomain there is at least one $x$ in the domain that maps to it.



          You seem to be trying to find all of the $x$ such that $f(x)=y$, which is more work than you need to do and creates a rather large detour.



          You could just say:




          Let $yinmathbb R^ge 0$ be given. Then $f(y)=|y|=y$, so by setting $x=y$ we find an $xinmathbb R$ such that $f(x)=y$. Since $y$ was arbitrary this proves that $f$ is surjective.




          (Even this is more verbose than it really needs to be, but in exercises at this elementary level it is good to be explicit about the details, to show that you know what you're doing).






          share|cite|improve this answer









          $endgroup$








          • 1




            $begingroup$
            (+1) Because this is a vey pedagogical answer.
            $endgroup$
            – José Carlos Santos
            yesterday













          21












          21








          21





          $begingroup$

          In order to show that the function is onto (surjective) it is enough to argue that for each $y$ in the codomain there is at least one $x$ in the domain that maps to it.



          You seem to be trying to find all of the $x$ such that $f(x)=y$, which is more work than you need to do and creates a rather large detour.



          You could just say:




          Let $yinmathbb R^ge 0$ be given. Then $f(y)=|y|=y$, so by setting $x=y$ we find an $xinmathbb R$ such that $f(x)=y$. Since $y$ was arbitrary this proves that $f$ is surjective.




          (Even this is more verbose than it really needs to be, but in exercises at this elementary level it is good to be explicit about the details, to show that you know what you're doing).






          share|cite|improve this answer









          $endgroup$



          In order to show that the function is onto (surjective) it is enough to argue that for each $y$ in the codomain there is at least one $x$ in the domain that maps to it.



          You seem to be trying to find all of the $x$ such that $f(x)=y$, which is more work than you need to do and creates a rather large detour.



          You could just say:




          Let $yinmathbb R^ge 0$ be given. Then $f(y)=|y|=y$, so by setting $x=y$ we find an $xinmathbb R$ such that $f(x)=y$. Since $y$ was arbitrary this proves that $f$ is surjective.




          (Even this is more verbose than it really needs to be, but in exercises at this elementary level it is good to be explicit about the details, to show that you know what you're doing).







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered yesterday









          Henning MakholmHenning Makholm

          242k17308551




          242k17308551







          • 1




            $begingroup$
            (+1) Because this is a vey pedagogical answer.
            $endgroup$
            – José Carlos Santos
            yesterday












          • 1




            $begingroup$
            (+1) Because this is a vey pedagogical answer.
            $endgroup$
            – José Carlos Santos
            yesterday







          1




          1




          $begingroup$
          (+1) Because this is a vey pedagogical answer.
          $endgroup$
          – José Carlos Santos
          yesterday




          $begingroup$
          (+1) Because this is a vey pedagogical answer.
          $endgroup$
          – José Carlos Santos
          yesterday











          4












          $begingroup$


          Am I supposed to individually account for the -x and the +x from ±x=±y when trying to solve f(x)=y?




          No.



          You are simply supposed to show that for any general arbitrary $y in mathbb R^ge 0$ that there is, at least (you don't have to find them all), one $xin mathbb R$ so that $|x| = y$.



          As $|y| = y$ this is very easy. And you are done.



          The proof is two lines:



          1) Let $y in mathbb R^ge 0$.



          2) $f(y) = |y| = y$.






          share|cite|improve this answer









          $endgroup$

















            4












            $begingroup$


            Am I supposed to individually account for the -x and the +x from ±x=±y when trying to solve f(x)=y?




            No.



            You are simply supposed to show that for any general arbitrary $y in mathbb R^ge 0$ that there is, at least (you don't have to find them all), one $xin mathbb R$ so that $|x| = y$.



            As $|y| = y$ this is very easy. And you are done.



            The proof is two lines:



            1) Let $y in mathbb R^ge 0$.



            2) $f(y) = |y| = y$.






            share|cite|improve this answer









            $endgroup$















              4












              4








              4





              $begingroup$


              Am I supposed to individually account for the -x and the +x from ±x=±y when trying to solve f(x)=y?




              No.



              You are simply supposed to show that for any general arbitrary $y in mathbb R^ge 0$ that there is, at least (you don't have to find them all), one $xin mathbb R$ so that $|x| = y$.



              As $|y| = y$ this is very easy. And you are done.



              The proof is two lines:



              1) Let $y in mathbb R^ge 0$.



              2) $f(y) = |y| = y$.






              share|cite|improve this answer









              $endgroup$




              Am I supposed to individually account for the -x and the +x from ±x=±y when trying to solve f(x)=y?




              No.



              You are simply supposed to show that for any general arbitrary $y in mathbb R^ge 0$ that there is, at least (you don't have to find them all), one $xin mathbb R$ so that $|x| = y$.



              As $|y| = y$ this is very easy. And you are done.



              The proof is two lines:



              1) Let $y in mathbb R^ge 0$.



              2) $f(y) = |y| = y$.







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered yesterday









              fleabloodfleablood

              73.4k22791




              73.4k22791





















                  2












                  $begingroup$

                  You should not start with $yinmathbb R$ but rather with $yinmathbbR^geqslant0$. Then $y=f(y)$. Since this happens for every $yinmathbbR^geqslant 0$, $f$ is onto.






                  share|cite|improve this answer











                  $endgroup$

















                    2












                    $begingroup$

                    You should not start with $yinmathbb R$ but rather with $yinmathbbR^geqslant0$. Then $y=f(y)$. Since this happens for every $yinmathbbR^geqslant 0$, $f$ is onto.






                    share|cite|improve this answer











                    $endgroup$















                      2












                      2








                      2





                      $begingroup$

                      You should not start with $yinmathbb R$ but rather with $yinmathbbR^geqslant0$. Then $y=f(y)$. Since this happens for every $yinmathbbR^geqslant 0$, $f$ is onto.






                      share|cite|improve this answer











                      $endgroup$



                      You should not start with $yinmathbb R$ but rather with $yinmathbbR^geqslant0$. Then $y=f(y)$. Since this happens for every $yinmathbbR^geqslant 0$, $f$ is onto.







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited yesterday









                      J. W. Tanner

                      3,8001320




                      3,8001320










                      answered yesterday









                      José Carlos SantosJosé Carlos Santos

                      170k23132238




                      170k23132238





















                          0












                          $begingroup$

                          Well, you want to show that $f$ is onto. So take an arbitrary element $yinBbb R_geq 0$ from the image set and find a preimage. Here a preimage is $y$ itself or even $-y$, since $|-y|=y$.






                          share|cite|improve this answer









                          $endgroup$

















                            0












                            $begingroup$

                            Well, you want to show that $f$ is onto. So take an arbitrary element $yinBbb R_geq 0$ from the image set and find a preimage. Here a preimage is $y$ itself or even $-y$, since $|-y|=y$.






                            share|cite|improve this answer









                            $endgroup$















                              0












                              0








                              0





                              $begingroup$

                              Well, you want to show that $f$ is onto. So take an arbitrary element $yinBbb R_geq 0$ from the image set and find a preimage. Here a preimage is $y$ itself or even $-y$, since $|-y|=y$.






                              share|cite|improve this answer









                              $endgroup$



                              Well, you want to show that $f$ is onto. So take an arbitrary element $yinBbb R_geq 0$ from the image set and find a preimage. Here a preimage is $y$ itself or even $-y$, since $|-y|=y$.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered yesterday









                              WuestenfuxWuestenfux

                              5,2981513




                              5,2981513





















                                  0












                                  $begingroup$

                                  More generally, If $B subseteq A$ and $f: A rightarrow B$ is a continuous mapping with $f(b) = b$ for all $b in B$ then $f$ is called a retraction of $A$ onto $B$. It is trivial that any such $f$ is onto since $f(b) = b$ for all $b in B$ immediately implies that all such $b$ are in the range. Note that continuity really plays no role in this. Thinking of $|x|$ as a retraction is perhaps overkill, but shows that the proof that it is onto the nonnegative reals is a special case of a more general (and equally easy to prove) result.






                                  share|cite|improve this answer









                                  $endgroup$

















                                    0












                                    $begingroup$

                                    More generally, If $B subseteq A$ and $f: A rightarrow B$ is a continuous mapping with $f(b) = b$ for all $b in B$ then $f$ is called a retraction of $A$ onto $B$. It is trivial that any such $f$ is onto since $f(b) = b$ for all $b in B$ immediately implies that all such $b$ are in the range. Note that continuity really plays no role in this. Thinking of $|x|$ as a retraction is perhaps overkill, but shows that the proof that it is onto the nonnegative reals is a special case of a more general (and equally easy to prove) result.






                                    share|cite|improve this answer









                                    $endgroup$















                                      0












                                      0








                                      0





                                      $begingroup$

                                      More generally, If $B subseteq A$ and $f: A rightarrow B$ is a continuous mapping with $f(b) = b$ for all $b in B$ then $f$ is called a retraction of $A$ onto $B$. It is trivial that any such $f$ is onto since $f(b) = b$ for all $b in B$ immediately implies that all such $b$ are in the range. Note that continuity really plays no role in this. Thinking of $|x|$ as a retraction is perhaps overkill, but shows that the proof that it is onto the nonnegative reals is a special case of a more general (and equally easy to prove) result.






                                      share|cite|improve this answer









                                      $endgroup$



                                      More generally, If $B subseteq A$ and $f: A rightarrow B$ is a continuous mapping with $f(b) = b$ for all $b in B$ then $f$ is called a retraction of $A$ onto $B$. It is trivial that any such $f$ is onto since $f(b) = b$ for all $b in B$ immediately implies that all such $b$ are in the range. Note that continuity really plays no role in this. Thinking of $|x|$ as a retraction is perhaps overkill, but shows that the proof that it is onto the nonnegative reals is a special case of a more general (and equally easy to prove) result.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered yesterday









                                      John ColemanJohn Coleman

                                      3,98311224




                                      3,98311224



























                                          draft saved

                                          draft discarded
















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid


                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.

                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function ()
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160658%2fproving-fx-x-is-onto%23new-answer', 'question_page');

                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          getting Checkpoint VPN SSL Network Extender working in the command lineHow to connect to CheckPoint VPN on Ubuntu 18.04LTS?Will the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayVPN SSL Network Extender in FirefoxLinux Checkpoint SNX tool configuration issuesCheck Point - Connect under Linux - snx + OTPSNX VPN Ububuntu 18.XXUsing Checkpoint VPN SSL Network Extender CLI with certificateVPN with network manager (nm-applet) is not workingWill the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayImport VPN config files to NetworkManager from command lineTrouble connecting to VPN using network-manager, while command line worksStart a VPN connection with PPTP protocol on command linestarting a docker service daemon breaks the vpn networkCan't connect to vpn with Network-managerVPN SSL Network Extender in FirefoxUsing Checkpoint VPN SSL Network Extender CLI with certificate

                                          Cannot Extend partition with GParted The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Community Moderator Election ResultsCan't increase partition size with GParted?GParted doesn't recognize the unallocated space after my current partitionWhat is the best way to add unallocated space located before to Ubuntu 12.04 partition with GParted live?I can't figure out how to extend my Arch home partition into free spaceGparted Linux Mint 18.1 issueTrying to extend but swap partition is showing as Unknown in Gparted, shows proper from fdiskRearrange partitions in gparted to extend a partitionUnable to extend partition even though unallocated space is next to it using GPartedAllocate free space to root partitiongparted: how to merge unallocated space with a partition

                                          Marilyn Monroe Ny fiainany manokana | Jereo koa | Meny fitetezanafanitarana azy.