A case of the snifflesCheckerboard Infection100 Prisoners' Names in BoxesThe First Interplanetary Arithmetic SummitFarm dimensionsMysterious Murder Mystery 5Ernie and the Pirates of the CaribbeanCan the policeman actually catch the thief, instead of shooting?The Cucumber ParadoxEspionage at the Chinese RestaurantErnie and the Case of the Singing SistersA man is trapped in a cage and wants to escape but doesn't, even when given the keys. Why?

What causes the sudden spool-up sound from an F-16 when enabling afterburner?

How could a lack of term limits lead to a "dictatorship?"

Is there a name of the flying bionic bird?

"My colleague's body is amazing"

Ideas for 3rd eye abilities

Information to fellow intern about hiring?

COUNT(*) or MAX(id) - which is faster?

Need help identifying/translating a plaque in Tangier, Morocco

What is the command to reset a PC without deleting any files

Lied on resume at previous job

Domain expired, GoDaddy holds it and is asking more money

Finding files for which a command fails

How can I add custom success page

Are white and non-white police officers equally likely to kill black suspects?

I see my dog run

Unbreakable Formation vs. Cry of the Carnarium

Pristine Bit Checking

Are cabin dividers used to "hide" the flex of the airplane?

A poker game description that does not feel gimmicky

Does a dangling wire really electrocute me if I'm standing in water?

Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?

Is Social Media Science Fiction?

Is there a familial term for apples and pears?

Can I find out the caloric content of bread by dehydrating it?



A case of the sniffles


Checkerboard Infection100 Prisoners' Names in BoxesThe First Interplanetary Arithmetic SummitFarm dimensionsMysterious Murder Mystery 5Ernie and the Pirates of the CaribbeanCan the policeman actually catch the thief, instead of shooting?The Cucumber ParadoxEspionage at the Chinese RestaurantErnie and the Case of the Singing SistersA man is trapped in a cage and wants to escape but doesn't, even when given the keys. Why?













8












$begingroup$


The cubicle farm



The cubicle farm at the Colla-R water treatment plant is laid out in a neat square: eight rows of eight cubicles with a narrow corridor between each cubicle (in the diagram the thin black lines are the corridors). Each cubicle is currently occupied by an employee, and no employees are on holiday.



The cubicles identified by being coloured red have ill employees in them: they have contracted some water-borne illness and are infectious. Due to the layout of the cubicles, a healthy employee only contracts the illness if they have two ill immediate neighbours in the four cardinal compass directions (you may take North to be pointing upwards relative to the page). For example, the cubicle at the end of the second row from the top contains an employee who is about to become ill. Ill employees do not go home, do not recover, are not allowed to leave their cubicle, but (luckily for them) do not die. As per company policy, the Colla-R HR department have now quarantined the cubicle farm, and no employee may leave until either everyone is ill, or everyone is well.



If, at the start of each hour, any healthy employee who has two ill neighbours as described becomes ill and immediately infectious, will all the employees fall ill? If not, what is the minimum number and location of ill employees that would ensure they do all fall ill? (The Colla-R HR department would of course like to avoid this happening.)










share|improve this question









$endgroup$







  • 2




    $begingroup$
    "no employee may leave until either everyone is ill, or everyone is well" - how would the latter be possible? You said ill employees do not recover.
    $endgroup$
    – Rand al'Thor
    Apr 5 at 16:33






  • 1




    $begingroup$
    @Randal'Thor and now you know something about the HR practices here....
    $endgroup$
    – postmortes
    Apr 5 at 16:34






  • 1




    $begingroup$
    @Randal'Thor less jokingly though, it's just to cover off all the edge cases
    $endgroup$
    – postmortes
    Apr 5 at 16:35






  • 2




    $begingroup$
    Same second question.
    $endgroup$
    – noedne
    Apr 5 at 17:06















8












$begingroup$


The cubicle farm



The cubicle farm at the Colla-R water treatment plant is laid out in a neat square: eight rows of eight cubicles with a narrow corridor between each cubicle (in the diagram the thin black lines are the corridors). Each cubicle is currently occupied by an employee, and no employees are on holiday.



The cubicles identified by being coloured red have ill employees in them: they have contracted some water-borne illness and are infectious. Due to the layout of the cubicles, a healthy employee only contracts the illness if they have two ill immediate neighbours in the four cardinal compass directions (you may take North to be pointing upwards relative to the page). For example, the cubicle at the end of the second row from the top contains an employee who is about to become ill. Ill employees do not go home, do not recover, are not allowed to leave their cubicle, but (luckily for them) do not die. As per company policy, the Colla-R HR department have now quarantined the cubicle farm, and no employee may leave until either everyone is ill, or everyone is well.



If, at the start of each hour, any healthy employee who has two ill neighbours as described becomes ill and immediately infectious, will all the employees fall ill? If not, what is the minimum number and location of ill employees that would ensure they do all fall ill? (The Colla-R HR department would of course like to avoid this happening.)










share|improve this question









$endgroup$







  • 2




    $begingroup$
    "no employee may leave until either everyone is ill, or everyone is well" - how would the latter be possible? You said ill employees do not recover.
    $endgroup$
    – Rand al'Thor
    Apr 5 at 16:33






  • 1




    $begingroup$
    @Randal'Thor and now you know something about the HR practices here....
    $endgroup$
    – postmortes
    Apr 5 at 16:34






  • 1




    $begingroup$
    @Randal'Thor less jokingly though, it's just to cover off all the edge cases
    $endgroup$
    – postmortes
    Apr 5 at 16:35






  • 2




    $begingroup$
    Same second question.
    $endgroup$
    – noedne
    Apr 5 at 17:06













8












8








8


1



$begingroup$


The cubicle farm



The cubicle farm at the Colla-R water treatment plant is laid out in a neat square: eight rows of eight cubicles with a narrow corridor between each cubicle (in the diagram the thin black lines are the corridors). Each cubicle is currently occupied by an employee, and no employees are on holiday.



The cubicles identified by being coloured red have ill employees in them: they have contracted some water-borne illness and are infectious. Due to the layout of the cubicles, a healthy employee only contracts the illness if they have two ill immediate neighbours in the four cardinal compass directions (you may take North to be pointing upwards relative to the page). For example, the cubicle at the end of the second row from the top contains an employee who is about to become ill. Ill employees do not go home, do not recover, are not allowed to leave their cubicle, but (luckily for them) do not die. As per company policy, the Colla-R HR department have now quarantined the cubicle farm, and no employee may leave until either everyone is ill, or everyone is well.



If, at the start of each hour, any healthy employee who has two ill neighbours as described becomes ill and immediately infectious, will all the employees fall ill? If not, what is the minimum number and location of ill employees that would ensure they do all fall ill? (The Colla-R HR department would of course like to avoid this happening.)










share|improve this question









$endgroup$




The cubicle farm



The cubicle farm at the Colla-R water treatment plant is laid out in a neat square: eight rows of eight cubicles with a narrow corridor between each cubicle (in the diagram the thin black lines are the corridors). Each cubicle is currently occupied by an employee, and no employees are on holiday.



The cubicles identified by being coloured red have ill employees in them: they have contracted some water-borne illness and are infectious. Due to the layout of the cubicles, a healthy employee only contracts the illness if they have two ill immediate neighbours in the four cardinal compass directions (you may take North to be pointing upwards relative to the page). For example, the cubicle at the end of the second row from the top contains an employee who is about to become ill. Ill employees do not go home, do not recover, are not allowed to leave their cubicle, but (luckily for them) do not die. As per company policy, the Colla-R HR department have now quarantined the cubicle farm, and no employee may leave until either everyone is ill, or everyone is well.



If, at the start of each hour, any healthy employee who has two ill neighbours as described becomes ill and immediately infectious, will all the employees fall ill? If not, what is the minimum number and location of ill employees that would ensure they do all fall ill? (The Colla-R HR department would of course like to avoid this happening.)







mathematics situation






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Apr 5 at 16:26









postmortespostmortes

520212




520212







  • 2




    $begingroup$
    "no employee may leave until either everyone is ill, or everyone is well" - how would the latter be possible? You said ill employees do not recover.
    $endgroup$
    – Rand al'Thor
    Apr 5 at 16:33






  • 1




    $begingroup$
    @Randal'Thor and now you know something about the HR practices here....
    $endgroup$
    – postmortes
    Apr 5 at 16:34






  • 1




    $begingroup$
    @Randal'Thor less jokingly though, it's just to cover off all the edge cases
    $endgroup$
    – postmortes
    Apr 5 at 16:35






  • 2




    $begingroup$
    Same second question.
    $endgroup$
    – noedne
    Apr 5 at 17:06












  • 2




    $begingroup$
    "no employee may leave until either everyone is ill, or everyone is well" - how would the latter be possible? You said ill employees do not recover.
    $endgroup$
    – Rand al'Thor
    Apr 5 at 16:33






  • 1




    $begingroup$
    @Randal'Thor and now you know something about the HR practices here....
    $endgroup$
    – postmortes
    Apr 5 at 16:34






  • 1




    $begingroup$
    @Randal'Thor less jokingly though, it's just to cover off all the edge cases
    $endgroup$
    – postmortes
    Apr 5 at 16:35






  • 2




    $begingroup$
    Same second question.
    $endgroup$
    – noedne
    Apr 5 at 17:06







2




2




$begingroup$
"no employee may leave until either everyone is ill, or everyone is well" - how would the latter be possible? You said ill employees do not recover.
$endgroup$
– Rand al'Thor
Apr 5 at 16:33




$begingroup$
"no employee may leave until either everyone is ill, or everyone is well" - how would the latter be possible? You said ill employees do not recover.
$endgroup$
– Rand al'Thor
Apr 5 at 16:33




1




1




$begingroup$
@Randal'Thor and now you know something about the HR practices here....
$endgroup$
– postmortes
Apr 5 at 16:34




$begingroup$
@Randal'Thor and now you know something about the HR practices here....
$endgroup$
– postmortes
Apr 5 at 16:34




1




1




$begingroup$
@Randal'Thor less jokingly though, it's just to cover off all the edge cases
$endgroup$
– postmortes
Apr 5 at 16:35




$begingroup$
@Randal'Thor less jokingly though, it's just to cover off all the edge cases
$endgroup$
– postmortes
Apr 5 at 16:35




2




2




$begingroup$
Same second question.
$endgroup$
– noedne
Apr 5 at 17:06




$begingroup$
Same second question.
$endgroup$
– noedne
Apr 5 at 17:06










1 Answer
1






active

oldest

votes


















9












$begingroup$

Answer 1




No, they will not all fall ill. In particular, none of the employees in the top (or bottom) row will fall ill as they need to have at least one infected neighbour in the same row. Since none are ill in the beginning, none will become ill.




Suggestion for the minimum




If all of the cubicles on a diagonal have ill employees then everybody will eventually fall ill. So this gives an upper bound of 8 for the minimum.




Proof that this is the minimum




One important thing to notice is that the total perimeter of the ill area never increases (this is due to the fact that the two cubicle walls providing the infection get absorbed into the infected area in the next step producing, at most, two new cubicle walls to the infected perimeter).

Now, suppose there are just $7$ ill employees. Then, the total infected perimeter is at most $4 times 7 =28$. This can never increase, hence, the infection cannot cover all employees since the total perimeter is $32$.







share|improve this answer











$endgroup$








  • 1




    $begingroup$
    Answer 1 is correct; if you can prove 8 as the minimum you get the tick :)
    $endgroup$
    – postmortes
    Apr 5 at 16:36











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "559"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f81449%2fa-case-of-the-sniffles%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









9












$begingroup$

Answer 1




No, they will not all fall ill. In particular, none of the employees in the top (or bottom) row will fall ill as they need to have at least one infected neighbour in the same row. Since none are ill in the beginning, none will become ill.




Suggestion for the minimum




If all of the cubicles on a diagonal have ill employees then everybody will eventually fall ill. So this gives an upper bound of 8 for the minimum.




Proof that this is the minimum




One important thing to notice is that the total perimeter of the ill area never increases (this is due to the fact that the two cubicle walls providing the infection get absorbed into the infected area in the next step producing, at most, two new cubicle walls to the infected perimeter).

Now, suppose there are just $7$ ill employees. Then, the total infected perimeter is at most $4 times 7 =28$. This can never increase, hence, the infection cannot cover all employees since the total perimeter is $32$.







share|improve this answer











$endgroup$








  • 1




    $begingroup$
    Answer 1 is correct; if you can prove 8 as the minimum you get the tick :)
    $endgroup$
    – postmortes
    Apr 5 at 16:36















9












$begingroup$

Answer 1




No, they will not all fall ill. In particular, none of the employees in the top (or bottom) row will fall ill as they need to have at least one infected neighbour in the same row. Since none are ill in the beginning, none will become ill.




Suggestion for the minimum




If all of the cubicles on a diagonal have ill employees then everybody will eventually fall ill. So this gives an upper bound of 8 for the minimum.




Proof that this is the minimum




One important thing to notice is that the total perimeter of the ill area never increases (this is due to the fact that the two cubicle walls providing the infection get absorbed into the infected area in the next step producing, at most, two new cubicle walls to the infected perimeter).

Now, suppose there are just $7$ ill employees. Then, the total infected perimeter is at most $4 times 7 =28$. This can never increase, hence, the infection cannot cover all employees since the total perimeter is $32$.







share|improve this answer











$endgroup$








  • 1




    $begingroup$
    Answer 1 is correct; if you can prove 8 as the minimum you get the tick :)
    $endgroup$
    – postmortes
    Apr 5 at 16:36













9












9








9





$begingroup$

Answer 1




No, they will not all fall ill. In particular, none of the employees in the top (or bottom) row will fall ill as they need to have at least one infected neighbour in the same row. Since none are ill in the beginning, none will become ill.




Suggestion for the minimum




If all of the cubicles on a diagonal have ill employees then everybody will eventually fall ill. So this gives an upper bound of 8 for the minimum.




Proof that this is the minimum




One important thing to notice is that the total perimeter of the ill area never increases (this is due to the fact that the two cubicle walls providing the infection get absorbed into the infected area in the next step producing, at most, two new cubicle walls to the infected perimeter).

Now, suppose there are just $7$ ill employees. Then, the total infected perimeter is at most $4 times 7 =28$. This can never increase, hence, the infection cannot cover all employees since the total perimeter is $32$.







share|improve this answer











$endgroup$



Answer 1




No, they will not all fall ill. In particular, none of the employees in the top (or bottom) row will fall ill as they need to have at least one infected neighbour in the same row. Since none are ill in the beginning, none will become ill.




Suggestion for the minimum




If all of the cubicles on a diagonal have ill employees then everybody will eventually fall ill. So this gives an upper bound of 8 for the minimum.




Proof that this is the minimum




One important thing to notice is that the total perimeter of the ill area never increases (this is due to the fact that the two cubicle walls providing the infection get absorbed into the infected area in the next step producing, at most, two new cubicle walls to the infected perimeter).

Now, suppose there are just $7$ ill employees. Then, the total infected perimeter is at most $4 times 7 =28$. This can never increase, hence, the infection cannot cover all employees since the total perimeter is $32$.








share|improve this answer














share|improve this answer



share|improve this answer








edited Apr 5 at 17:02

























answered Apr 5 at 16:34









hexominohexomino

46.2k4141220




46.2k4141220







  • 1




    $begingroup$
    Answer 1 is correct; if you can prove 8 as the minimum you get the tick :)
    $endgroup$
    – postmortes
    Apr 5 at 16:36












  • 1




    $begingroup$
    Answer 1 is correct; if you can prove 8 as the minimum you get the tick :)
    $endgroup$
    – postmortes
    Apr 5 at 16:36







1




1




$begingroup$
Answer 1 is correct; if you can prove 8 as the minimum you get the tick :)
$endgroup$
– postmortes
Apr 5 at 16:36




$begingroup$
Answer 1 is correct; if you can prove 8 as the minimum you get the tick :)
$endgroup$
– postmortes
Apr 5 at 16:36

















draft saved

draft discarded
















































Thanks for contributing an answer to Puzzling Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f81449%2fa-case-of-the-sniffles%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

getting Checkpoint VPN SSL Network Extender working in the command lineHow to connect to CheckPoint VPN on Ubuntu 18.04LTS?Will the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayVPN SSL Network Extender in FirefoxLinux Checkpoint SNX tool configuration issuesCheck Point - Connect under Linux - snx + OTPSNX VPN Ububuntu 18.XXUsing Checkpoint VPN SSL Network Extender CLI with certificateVPN with network manager (nm-applet) is not workingWill the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayImport VPN config files to NetworkManager from command lineTrouble connecting to VPN using network-manager, while command line worksStart a VPN connection with PPTP protocol on command linestarting a docker service daemon breaks the vpn networkCan't connect to vpn with Network-managerVPN SSL Network Extender in FirefoxUsing Checkpoint VPN SSL Network Extender CLI with certificate

Cannot Extend partition with GParted The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Community Moderator Election ResultsCan't increase partition size with GParted?GParted doesn't recognize the unallocated space after my current partitionWhat is the best way to add unallocated space located before to Ubuntu 12.04 partition with GParted live?I can't figure out how to extend my Arch home partition into free spaceGparted Linux Mint 18.1 issueTrying to extend but swap partition is showing as Unknown in Gparted, shows proper from fdiskRearrange partitions in gparted to extend a partitionUnable to extend partition even though unallocated space is next to it using GPartedAllocate free space to root partitiongparted: how to merge unallocated space with a partition

Marilyn Monroe Ny fiainany manokana | Jereo koa | Meny fitetezanafanitarana azy.