Operational amplifier as a comparator at high frequencyReasons not to use a 741 op-amp?Can I use LM324 as a Schmitt trigger?Comparing sine wave and triangular for spwm using comparatorSimple op-amp differential amplifierOp amp has a biased outputReduced output of op amp peak detection and hold circuitHow to select the right Operational Amplifier as an impedance converter?Bias voltage of non-inverting op amplifier drops to 0 when input signal connectedHigh negative voltages with op-ampopamp output unstableComparator circuit undesirable fluctuations20kHz sine wave signal amplificationIf there exists a cascade of op amps, does the previous op amp's slew rate affect the later op amp's slew rates?

Landlord wants to switch my lease to a "Land contract" to "get back at the city"

extract characters between two commas?

Can a planet have a different gravitational pull depending on its location in orbit around its sun?

How to answer pointed "are you quitting" questioning when I don't want them to suspect

How would photo IDs work for shapeshifters?

Re-submission of rejected manuscript without informing co-authors

Is "plugging out" electronic devices an American expression?

Copycat chess is back

If a centaur druid Wild Shapes into a Giant Elk, do their Charge features stack?

Shall I use personal or official e-mail account when registering to external websites for work purpose?

Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?

What is the meaning of "of trouble" in the following sentence?

aging parents with no investments

Is ipsum/ipsa/ipse a third person pronoun, or can it serve other functions?

Domain expired, GoDaddy holds it and is asking more money

Map list to bin numbers

I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine

What happens when a metallic dragon and a chromatic dragon mate?

Could a US political party gain complete control over the government by removing checks & balances?

How can I fix this gap between bookcases I made?

Pristine Bit Checking

Is a vector space a subspace of itself?

What is it called when one voice type sings a 'solo'?

Extreme, but not acceptable situation and I can't start the work tomorrow morning



Operational amplifier as a comparator at high frequency


Reasons not to use a 741 op-amp?Can I use LM324 as a Schmitt trigger?Comparing sine wave and triangular for spwm using comparatorSimple op-amp differential amplifierOp amp has a biased outputReduced output of op amp peak detection and hold circuitHow to select the right Operational Amplifier as an impedance converter?Bias voltage of non-inverting op amplifier drops to 0 when input signal connectedHigh negative voltages with op-ampopamp output unstableComparator circuit undesirable fluctuations20kHz sine wave signal amplificationIf there exists a cascade of op amps, does the previous op amp's slew rate affect the later op amp's slew rates?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








6












$begingroup$


I am trying to generate a sinusoidal PWM signal using analog circuits.
I want to compare my sine wave and triangular wave using an operational amplifier (LM741) which has a rise time of 0.3 µs and slew rate 0.5 V/µs, which will good at 5 kHz theoretically. But I am not getting a good PWM output.



So I first tried to compare the sine wave with a reference voltage (2.2 volt). Sine wave amplitude = 2.5 volt (5 V peak to peak) and frequency 100 Hz and 5 kHz.



Enter image description here



  • At low frequency (say 100 Hz), the output is good

  • At high frequency (say 5 kHz), the output is too bad.

Enter image description here



Enter image description here



What will be the problem...



If the response is the problem of the comparator, but the slew rate is 0.5 V/µs.



Calculation of slew rate for a sinusoidal signal...



Slew rate= Vm * 2pi * Frequency



 = 5 V * 2pi* 5000 Hz

= 1570796 volt per second or 0.15 V/µs


Theoretically the slew rate of 0.5 V/µs will be OK for a sinusoidal signal of 5 kHz and 5 volt peak to peak. But in my case the signal is distorted.



Where am I wrong?










share|improve this question











$endgroup$











  • $begingroup$
    It looks like there's a significant lag/delay in the output's response w.r.t. the input signal (~30µs?). What may be causing this? What's connected to the output? 'Scope probe only?
    $endgroup$
    – JimmyB
    Apr 5 at 11:00






  • 5




    $begingroup$
    Why you shouldn't use the 741.
    $endgroup$
    – JRE
    Apr 5 at 11:16










  • $begingroup$
    For 5Khz i thought 741 will be ok, for what i calculated .Orelse sure i will change the opp amp which having high slew rate and i will update it.......@JRE
    $endgroup$
    – Nihal
    Apr 5 at 11:26







  • 1




    $begingroup$
    You're latching up.
    $endgroup$
    – Scott Seidman
    Apr 5 at 12:34






  • 2




    $begingroup$
    Note that this question is about the theory behind the calculations. Telling OP to change his OP-amp does nothing to answer the question. It just solves the problem without OP knowing why.
    $endgroup$
    – pipe
    Apr 5 at 19:58

















6












$begingroup$


I am trying to generate a sinusoidal PWM signal using analog circuits.
I want to compare my sine wave and triangular wave using an operational amplifier (LM741) which has a rise time of 0.3 µs and slew rate 0.5 V/µs, which will good at 5 kHz theoretically. But I am not getting a good PWM output.



So I first tried to compare the sine wave with a reference voltage (2.2 volt). Sine wave amplitude = 2.5 volt (5 V peak to peak) and frequency 100 Hz and 5 kHz.



Enter image description here



  • At low frequency (say 100 Hz), the output is good

  • At high frequency (say 5 kHz), the output is too bad.

Enter image description here



Enter image description here



What will be the problem...



If the response is the problem of the comparator, but the slew rate is 0.5 V/µs.



Calculation of slew rate for a sinusoidal signal...



Slew rate= Vm * 2pi * Frequency



 = 5 V * 2pi* 5000 Hz

= 1570796 volt per second or 0.15 V/µs


Theoretically the slew rate of 0.5 V/µs will be OK for a sinusoidal signal of 5 kHz and 5 volt peak to peak. But in my case the signal is distorted.



Where am I wrong?










share|improve this question











$endgroup$











  • $begingroup$
    It looks like there's a significant lag/delay in the output's response w.r.t. the input signal (~30µs?). What may be causing this? What's connected to the output? 'Scope probe only?
    $endgroup$
    – JimmyB
    Apr 5 at 11:00






  • 5




    $begingroup$
    Why you shouldn't use the 741.
    $endgroup$
    – JRE
    Apr 5 at 11:16










  • $begingroup$
    For 5Khz i thought 741 will be ok, for what i calculated .Orelse sure i will change the opp amp which having high slew rate and i will update it.......@JRE
    $endgroup$
    – Nihal
    Apr 5 at 11:26







  • 1




    $begingroup$
    You're latching up.
    $endgroup$
    – Scott Seidman
    Apr 5 at 12:34






  • 2




    $begingroup$
    Note that this question is about the theory behind the calculations. Telling OP to change his OP-amp does nothing to answer the question. It just solves the problem without OP knowing why.
    $endgroup$
    – pipe
    Apr 5 at 19:58













6












6








6





$begingroup$


I am trying to generate a sinusoidal PWM signal using analog circuits.
I want to compare my sine wave and triangular wave using an operational amplifier (LM741) which has a rise time of 0.3 µs and slew rate 0.5 V/µs, which will good at 5 kHz theoretically. But I am not getting a good PWM output.



So I first tried to compare the sine wave with a reference voltage (2.2 volt). Sine wave amplitude = 2.5 volt (5 V peak to peak) and frequency 100 Hz and 5 kHz.



Enter image description here



  • At low frequency (say 100 Hz), the output is good

  • At high frequency (say 5 kHz), the output is too bad.

Enter image description here



Enter image description here



What will be the problem...



If the response is the problem of the comparator, but the slew rate is 0.5 V/µs.



Calculation of slew rate for a sinusoidal signal...



Slew rate= Vm * 2pi * Frequency



 = 5 V * 2pi* 5000 Hz

= 1570796 volt per second or 0.15 V/µs


Theoretically the slew rate of 0.5 V/µs will be OK for a sinusoidal signal of 5 kHz and 5 volt peak to peak. But in my case the signal is distorted.



Where am I wrong?










share|improve this question











$endgroup$




I am trying to generate a sinusoidal PWM signal using analog circuits.
I want to compare my sine wave and triangular wave using an operational amplifier (LM741) which has a rise time of 0.3 µs and slew rate 0.5 V/µs, which will good at 5 kHz theoretically. But I am not getting a good PWM output.



So I first tried to compare the sine wave with a reference voltage (2.2 volt). Sine wave amplitude = 2.5 volt (5 V peak to peak) and frequency 100 Hz and 5 kHz.



Enter image description here



  • At low frequency (say 100 Hz), the output is good

  • At high frequency (say 5 kHz), the output is too bad.

Enter image description here



Enter image description here



What will be the problem...



If the response is the problem of the comparator, but the slew rate is 0.5 V/µs.



Calculation of slew rate for a sinusoidal signal...



Slew rate= Vm * 2pi * Frequency



 = 5 V * 2pi* 5000 Hz

= 1570796 volt per second or 0.15 V/µs


Theoretically the slew rate of 0.5 V/µs will be OK for a sinusoidal signal of 5 kHz and 5 volt peak to peak. But in my case the signal is distorted.



Where am I wrong?







operational-amplifier comparator






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Apr 5 at 19:15









Peter Mortensen

1,60031422




1,60031422










asked Apr 5 at 10:51









NihalNihal

638




638











  • $begingroup$
    It looks like there's a significant lag/delay in the output's response w.r.t. the input signal (~30µs?). What may be causing this? What's connected to the output? 'Scope probe only?
    $endgroup$
    – JimmyB
    Apr 5 at 11:00






  • 5




    $begingroup$
    Why you shouldn't use the 741.
    $endgroup$
    – JRE
    Apr 5 at 11:16










  • $begingroup$
    For 5Khz i thought 741 will be ok, for what i calculated .Orelse sure i will change the opp amp which having high slew rate and i will update it.......@JRE
    $endgroup$
    – Nihal
    Apr 5 at 11:26







  • 1




    $begingroup$
    You're latching up.
    $endgroup$
    – Scott Seidman
    Apr 5 at 12:34






  • 2




    $begingroup$
    Note that this question is about the theory behind the calculations. Telling OP to change his OP-amp does nothing to answer the question. It just solves the problem without OP knowing why.
    $endgroup$
    – pipe
    Apr 5 at 19:58
















  • $begingroup$
    It looks like there's a significant lag/delay in the output's response w.r.t. the input signal (~30µs?). What may be causing this? What's connected to the output? 'Scope probe only?
    $endgroup$
    – JimmyB
    Apr 5 at 11:00






  • 5




    $begingroup$
    Why you shouldn't use the 741.
    $endgroup$
    – JRE
    Apr 5 at 11:16










  • $begingroup$
    For 5Khz i thought 741 will be ok, for what i calculated .Orelse sure i will change the opp amp which having high slew rate and i will update it.......@JRE
    $endgroup$
    – Nihal
    Apr 5 at 11:26







  • 1




    $begingroup$
    You're latching up.
    $endgroup$
    – Scott Seidman
    Apr 5 at 12:34






  • 2




    $begingroup$
    Note that this question is about the theory behind the calculations. Telling OP to change his OP-amp does nothing to answer the question. It just solves the problem without OP knowing why.
    $endgroup$
    – pipe
    Apr 5 at 19:58















$begingroup$
It looks like there's a significant lag/delay in the output's response w.r.t. the input signal (~30µs?). What may be causing this? What's connected to the output? 'Scope probe only?
$endgroup$
– JimmyB
Apr 5 at 11:00




$begingroup$
It looks like there's a significant lag/delay in the output's response w.r.t. the input signal (~30µs?). What may be causing this? What's connected to the output? 'Scope probe only?
$endgroup$
– JimmyB
Apr 5 at 11:00




5




5




$begingroup$
Why you shouldn't use the 741.
$endgroup$
– JRE
Apr 5 at 11:16




$begingroup$
Why you shouldn't use the 741.
$endgroup$
– JRE
Apr 5 at 11:16












$begingroup$
For 5Khz i thought 741 will be ok, for what i calculated .Orelse sure i will change the opp amp which having high slew rate and i will update it.......@JRE
$endgroup$
– Nihal
Apr 5 at 11:26





$begingroup$
For 5Khz i thought 741 will be ok, for what i calculated .Orelse sure i will change the opp amp which having high slew rate and i will update it.......@JRE
$endgroup$
– Nihal
Apr 5 at 11:26





1




1




$begingroup$
You're latching up.
$endgroup$
– Scott Seidman
Apr 5 at 12:34




$begingroup$
You're latching up.
$endgroup$
– Scott Seidman
Apr 5 at 12:34




2




2




$begingroup$
Note that this question is about the theory behind the calculations. Telling OP to change his OP-amp does nothing to answer the question. It just solves the problem without OP knowing why.
$endgroup$
– pipe
Apr 5 at 19:58




$begingroup$
Note that this question is about the theory behind the calculations. Telling OP to change his OP-amp does nothing to answer the question. It just solves the problem without OP knowing why.
$endgroup$
– pipe
Apr 5 at 19:58










5 Answers
5






active

oldest

votes


















9












$begingroup$

The recommendations for you are very simple.



  1. Use a comparator for this application instead of an opamp.


  2. Select a newer part that operates with orders of magnitude faster response time.


It would be the very best thing if the 741 could be eradicated from face of the earth.



Here is what can be achieved with the venerable LM393 at 5kHz. The shown circuit will work even up to about 50kHz before the delay of the LM393 starts to distort the PWM duty cycle.



enter image description here



enter image description here






share|improve this answer











$endgroup$












  • $begingroup$
    Sure friend i will change the opp amp or by using comparator, i will update the data soon.
    $endgroup$
    – Nihal
    Apr 5 at 11:33






  • 1




    $begingroup$
    @Nihal - If you show some new results in the question do not delete your original material, Instead add it as an update at the end. The reason for this is that hopefully this question can be a reference to future readers that are looking for information as being discussed here. If you delete the original material the answers here would no longer make much sense to a future reader.
    $endgroup$
    – Michael Karas
    Apr 5 at 11:47






  • 1




    $begingroup$
    "It would be the very best thing if the 741 could be eradicated from face of the earth." ok - I'll bite. what's your reasons?
    $endgroup$
    – UKMonkey
    Apr 5 at 15:35






  • 2




    $begingroup$
    @UKMonkey the 741 was first released in 1968. And while it was a fantastic IC at the time, there are vastly superior op-amps available with lower input offset voltage, higher bandwidth, higher input impedance, etc. Most people lean the "ideal op-amp" first, and then immediately jump to one of the most non-ideal op-amps in practice, and wonder why their design doesn't work.
    $endgroup$
    – CurtisHx
    Apr 5 at 16:10










  • $begingroup$
    LM741 might still be in the textbooks...
    $endgroup$
    – Peter Mortensen
    Apr 5 at 16:19


















4












$begingroup$

Opamps work slowly with low power supply voltages. In addition they are designed to work in linear region. As saturated, like in your application, the response has an unpredictable dead time. before the internal saturation is vanished.



I can only repeat what's already said: Get a comparator. 741 was a remarkable step forward half a century ago, but things have developed better since those days.






share|improve this answer









$endgroup$












  • $begingroup$
    Thank you for your response friend, i will update it after changing the opp amp.
    $endgroup$
    – Nihal
    Apr 5 at 11:29






  • 2




    $begingroup$
    @Nihal Comparators have other precautions. They are high speed circuits like logic parts. You must have acceptably short wires and coupling capacitors between supply voltage inputs. Making the circuit with 0,5 meter long wires onto a breadboard without coupling caps (I have seen those attempts) will be useless.
    $endgroup$
    – user287001
    Apr 5 at 11:39










  • $begingroup$
    Ok friend I will even buy a comparator and I will check with it.
    $endgroup$
    – Nihal
    Apr 5 at 18:34


















1












$begingroup$

Op-amps are susceptible to latch-up. Recovering from saturation at the rails is not an automatic thing. The ratings you are reading a for the op amp working in a feedback mode, not an open loop mode. You would need to find an op amp designed to minimize latch-up, or better yet, when you need a comparator, buy a comparator.






share|improve this answer









$endgroup$








  • 1




    $begingroup$
    Yes, and/or phase inversion, depending on the op-amp type.
    $endgroup$
    – Peter Mortensen
    Apr 5 at 17:10



















1












$begingroup$

[modified to run on +9/-6 volt rails]
You may try this, if you want a discrete solution. The delay, without input protection resistor, should be about 20 nanoseconds.





schematic





simulate this circuit – Schematic created using CircuitLab



The speed will be limited by Rin (10Kohm) and a minimal Miller Effect Cin (20pF?), thus propagation delay will be about 0.2 us (200 nanosecond).






share|improve this answer











$endgroup$












  • $begingroup$
    What is it? A Schmitt trigger?
    $endgroup$
    – Peter Mortensen
    Apr 5 at 16:21










  • $begingroup$
    The differential pair is biased at VDD/2. R8 does provide 1% positive feedback, to reduce the risk of oscillation during the linear region. Notice I included over-voltage protection.
    $endgroup$
    – analogsystemsrf
    Apr 6 at 3:28


















0












$begingroup$

Most garden variety op-amps have internal compensation in the form of a chip capacitor.



This makes them very slow, but more stable in analog circuits.



Why not use a cheap comparator like LM393?






share|improve this answer











$endgroup$












  • $begingroup$
    Thank you friend it works good while using comparator LM339.
    $endgroup$
    – Nihal
    23 hours ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
);
);
, "mathjax-editing");

StackExchange.ifUsing("editor", function ()
return StackExchange.using("schematics", function ()
StackExchange.schematics.init();
);
, "cicuitlab");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "135"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f430885%2foperational-amplifier-as-a-comparator-at-high-frequency%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























5 Answers
5






active

oldest

votes








5 Answers
5






active

oldest

votes









active

oldest

votes






active

oldest

votes









9












$begingroup$

The recommendations for you are very simple.



  1. Use a comparator for this application instead of an opamp.


  2. Select a newer part that operates with orders of magnitude faster response time.


It would be the very best thing if the 741 could be eradicated from face of the earth.



Here is what can be achieved with the venerable LM393 at 5kHz. The shown circuit will work even up to about 50kHz before the delay of the LM393 starts to distort the PWM duty cycle.



enter image description here



enter image description here






share|improve this answer











$endgroup$












  • $begingroup$
    Sure friend i will change the opp amp or by using comparator, i will update the data soon.
    $endgroup$
    – Nihal
    Apr 5 at 11:33






  • 1




    $begingroup$
    @Nihal - If you show some new results in the question do not delete your original material, Instead add it as an update at the end. The reason for this is that hopefully this question can be a reference to future readers that are looking for information as being discussed here. If you delete the original material the answers here would no longer make much sense to a future reader.
    $endgroup$
    – Michael Karas
    Apr 5 at 11:47






  • 1




    $begingroup$
    "It would be the very best thing if the 741 could be eradicated from face of the earth." ok - I'll bite. what's your reasons?
    $endgroup$
    – UKMonkey
    Apr 5 at 15:35






  • 2




    $begingroup$
    @UKMonkey the 741 was first released in 1968. And while it was a fantastic IC at the time, there are vastly superior op-amps available with lower input offset voltage, higher bandwidth, higher input impedance, etc. Most people lean the "ideal op-amp" first, and then immediately jump to one of the most non-ideal op-amps in practice, and wonder why their design doesn't work.
    $endgroup$
    – CurtisHx
    Apr 5 at 16:10










  • $begingroup$
    LM741 might still be in the textbooks...
    $endgroup$
    – Peter Mortensen
    Apr 5 at 16:19















9












$begingroup$

The recommendations for you are very simple.



  1. Use a comparator for this application instead of an opamp.


  2. Select a newer part that operates with orders of magnitude faster response time.


It would be the very best thing if the 741 could be eradicated from face of the earth.



Here is what can be achieved with the venerable LM393 at 5kHz. The shown circuit will work even up to about 50kHz before the delay of the LM393 starts to distort the PWM duty cycle.



enter image description here



enter image description here






share|improve this answer











$endgroup$












  • $begingroup$
    Sure friend i will change the opp amp or by using comparator, i will update the data soon.
    $endgroup$
    – Nihal
    Apr 5 at 11:33






  • 1




    $begingroup$
    @Nihal - If you show some new results in the question do not delete your original material, Instead add it as an update at the end. The reason for this is that hopefully this question can be a reference to future readers that are looking for information as being discussed here. If you delete the original material the answers here would no longer make much sense to a future reader.
    $endgroup$
    – Michael Karas
    Apr 5 at 11:47






  • 1




    $begingroup$
    "It would be the very best thing if the 741 could be eradicated from face of the earth." ok - I'll bite. what's your reasons?
    $endgroup$
    – UKMonkey
    Apr 5 at 15:35






  • 2




    $begingroup$
    @UKMonkey the 741 was first released in 1968. And while it was a fantastic IC at the time, there are vastly superior op-amps available with lower input offset voltage, higher bandwidth, higher input impedance, etc. Most people lean the "ideal op-amp" first, and then immediately jump to one of the most non-ideal op-amps in practice, and wonder why their design doesn't work.
    $endgroup$
    – CurtisHx
    Apr 5 at 16:10










  • $begingroup$
    LM741 might still be in the textbooks...
    $endgroup$
    – Peter Mortensen
    Apr 5 at 16:19













9












9








9





$begingroup$

The recommendations for you are very simple.



  1. Use a comparator for this application instead of an opamp.


  2. Select a newer part that operates with orders of magnitude faster response time.


It would be the very best thing if the 741 could be eradicated from face of the earth.



Here is what can be achieved with the venerable LM393 at 5kHz. The shown circuit will work even up to about 50kHz before the delay of the LM393 starts to distort the PWM duty cycle.



enter image description here



enter image description here






share|improve this answer











$endgroup$



The recommendations for you are very simple.



  1. Use a comparator for this application instead of an opamp.


  2. Select a newer part that operates with orders of magnitude faster response time.


It would be the very best thing if the 741 could be eradicated from face of the earth.



Here is what can be achieved with the venerable LM393 at 5kHz. The shown circuit will work even up to about 50kHz before the delay of the LM393 starts to distort the PWM duty cycle.



enter image description here



enter image description here







share|improve this answer














share|improve this answer



share|improve this answer








edited Apr 5 at 11:52

























answered Apr 5 at 11:03









Michael KarasMichael Karas

45.2k348105




45.2k348105











  • $begingroup$
    Sure friend i will change the opp amp or by using comparator, i will update the data soon.
    $endgroup$
    – Nihal
    Apr 5 at 11:33






  • 1




    $begingroup$
    @Nihal - If you show some new results in the question do not delete your original material, Instead add it as an update at the end. The reason for this is that hopefully this question can be a reference to future readers that are looking for information as being discussed here. If you delete the original material the answers here would no longer make much sense to a future reader.
    $endgroup$
    – Michael Karas
    Apr 5 at 11:47






  • 1




    $begingroup$
    "It would be the very best thing if the 741 could be eradicated from face of the earth." ok - I'll bite. what's your reasons?
    $endgroup$
    – UKMonkey
    Apr 5 at 15:35






  • 2




    $begingroup$
    @UKMonkey the 741 was first released in 1968. And while it was a fantastic IC at the time, there are vastly superior op-amps available with lower input offset voltage, higher bandwidth, higher input impedance, etc. Most people lean the "ideal op-amp" first, and then immediately jump to one of the most non-ideal op-amps in practice, and wonder why their design doesn't work.
    $endgroup$
    – CurtisHx
    Apr 5 at 16:10










  • $begingroup$
    LM741 might still be in the textbooks...
    $endgroup$
    – Peter Mortensen
    Apr 5 at 16:19
















  • $begingroup$
    Sure friend i will change the opp amp or by using comparator, i will update the data soon.
    $endgroup$
    – Nihal
    Apr 5 at 11:33






  • 1




    $begingroup$
    @Nihal - If you show some new results in the question do not delete your original material, Instead add it as an update at the end. The reason for this is that hopefully this question can be a reference to future readers that are looking for information as being discussed here. If you delete the original material the answers here would no longer make much sense to a future reader.
    $endgroup$
    – Michael Karas
    Apr 5 at 11:47






  • 1




    $begingroup$
    "It would be the very best thing if the 741 could be eradicated from face of the earth." ok - I'll bite. what's your reasons?
    $endgroup$
    – UKMonkey
    Apr 5 at 15:35






  • 2




    $begingroup$
    @UKMonkey the 741 was first released in 1968. And while it was a fantastic IC at the time, there are vastly superior op-amps available with lower input offset voltage, higher bandwidth, higher input impedance, etc. Most people lean the "ideal op-amp" first, and then immediately jump to one of the most non-ideal op-amps in practice, and wonder why their design doesn't work.
    $endgroup$
    – CurtisHx
    Apr 5 at 16:10










  • $begingroup$
    LM741 might still be in the textbooks...
    $endgroup$
    – Peter Mortensen
    Apr 5 at 16:19















$begingroup$
Sure friend i will change the opp amp or by using comparator, i will update the data soon.
$endgroup$
– Nihal
Apr 5 at 11:33




$begingroup$
Sure friend i will change the opp amp or by using comparator, i will update the data soon.
$endgroup$
– Nihal
Apr 5 at 11:33




1




1




$begingroup$
@Nihal - If you show some new results in the question do not delete your original material, Instead add it as an update at the end. The reason for this is that hopefully this question can be a reference to future readers that are looking for information as being discussed here. If you delete the original material the answers here would no longer make much sense to a future reader.
$endgroup$
– Michael Karas
Apr 5 at 11:47




$begingroup$
@Nihal - If you show some new results in the question do not delete your original material, Instead add it as an update at the end. The reason for this is that hopefully this question can be a reference to future readers that are looking for information as being discussed here. If you delete the original material the answers here would no longer make much sense to a future reader.
$endgroup$
– Michael Karas
Apr 5 at 11:47




1




1




$begingroup$
"It would be the very best thing if the 741 could be eradicated from face of the earth." ok - I'll bite. what's your reasons?
$endgroup$
– UKMonkey
Apr 5 at 15:35




$begingroup$
"It would be the very best thing if the 741 could be eradicated from face of the earth." ok - I'll bite. what's your reasons?
$endgroup$
– UKMonkey
Apr 5 at 15:35




2




2




$begingroup$
@UKMonkey the 741 was first released in 1968. And while it was a fantastic IC at the time, there are vastly superior op-amps available with lower input offset voltage, higher bandwidth, higher input impedance, etc. Most people lean the "ideal op-amp" first, and then immediately jump to one of the most non-ideal op-amps in practice, and wonder why their design doesn't work.
$endgroup$
– CurtisHx
Apr 5 at 16:10




$begingroup$
@UKMonkey the 741 was first released in 1968. And while it was a fantastic IC at the time, there are vastly superior op-amps available with lower input offset voltage, higher bandwidth, higher input impedance, etc. Most people lean the "ideal op-amp" first, and then immediately jump to one of the most non-ideal op-amps in practice, and wonder why their design doesn't work.
$endgroup$
– CurtisHx
Apr 5 at 16:10












$begingroup$
LM741 might still be in the textbooks...
$endgroup$
– Peter Mortensen
Apr 5 at 16:19




$begingroup$
LM741 might still be in the textbooks...
$endgroup$
– Peter Mortensen
Apr 5 at 16:19













4












$begingroup$

Opamps work slowly with low power supply voltages. In addition they are designed to work in linear region. As saturated, like in your application, the response has an unpredictable dead time. before the internal saturation is vanished.



I can only repeat what's already said: Get a comparator. 741 was a remarkable step forward half a century ago, but things have developed better since those days.






share|improve this answer









$endgroup$












  • $begingroup$
    Thank you for your response friend, i will update it after changing the opp amp.
    $endgroup$
    – Nihal
    Apr 5 at 11:29






  • 2




    $begingroup$
    @Nihal Comparators have other precautions. They are high speed circuits like logic parts. You must have acceptably short wires and coupling capacitors between supply voltage inputs. Making the circuit with 0,5 meter long wires onto a breadboard without coupling caps (I have seen those attempts) will be useless.
    $endgroup$
    – user287001
    Apr 5 at 11:39










  • $begingroup$
    Ok friend I will even buy a comparator and I will check with it.
    $endgroup$
    – Nihal
    Apr 5 at 18:34















4












$begingroup$

Opamps work slowly with low power supply voltages. In addition they are designed to work in linear region. As saturated, like in your application, the response has an unpredictable dead time. before the internal saturation is vanished.



I can only repeat what's already said: Get a comparator. 741 was a remarkable step forward half a century ago, but things have developed better since those days.






share|improve this answer









$endgroup$












  • $begingroup$
    Thank you for your response friend, i will update it after changing the opp amp.
    $endgroup$
    – Nihal
    Apr 5 at 11:29






  • 2




    $begingroup$
    @Nihal Comparators have other precautions. They are high speed circuits like logic parts. You must have acceptably short wires and coupling capacitors between supply voltage inputs. Making the circuit with 0,5 meter long wires onto a breadboard without coupling caps (I have seen those attempts) will be useless.
    $endgroup$
    – user287001
    Apr 5 at 11:39










  • $begingroup$
    Ok friend I will even buy a comparator and I will check with it.
    $endgroup$
    – Nihal
    Apr 5 at 18:34













4












4








4





$begingroup$

Opamps work slowly with low power supply voltages. In addition they are designed to work in linear region. As saturated, like in your application, the response has an unpredictable dead time. before the internal saturation is vanished.



I can only repeat what's already said: Get a comparator. 741 was a remarkable step forward half a century ago, but things have developed better since those days.






share|improve this answer









$endgroup$



Opamps work slowly with low power supply voltages. In addition they are designed to work in linear region. As saturated, like in your application, the response has an unpredictable dead time. before the internal saturation is vanished.



I can only repeat what's already said: Get a comparator. 741 was a remarkable step forward half a century ago, but things have developed better since those days.







share|improve this answer












share|improve this answer



share|improve this answer










answered Apr 5 at 11:09









user287001user287001

9,7291517




9,7291517











  • $begingroup$
    Thank you for your response friend, i will update it after changing the opp amp.
    $endgroup$
    – Nihal
    Apr 5 at 11:29






  • 2




    $begingroup$
    @Nihal Comparators have other precautions. They are high speed circuits like logic parts. You must have acceptably short wires and coupling capacitors between supply voltage inputs. Making the circuit with 0,5 meter long wires onto a breadboard without coupling caps (I have seen those attempts) will be useless.
    $endgroup$
    – user287001
    Apr 5 at 11:39










  • $begingroup$
    Ok friend I will even buy a comparator and I will check with it.
    $endgroup$
    – Nihal
    Apr 5 at 18:34
















  • $begingroup$
    Thank you for your response friend, i will update it after changing the opp amp.
    $endgroup$
    – Nihal
    Apr 5 at 11:29






  • 2




    $begingroup$
    @Nihal Comparators have other precautions. They are high speed circuits like logic parts. You must have acceptably short wires and coupling capacitors between supply voltage inputs. Making the circuit with 0,5 meter long wires onto a breadboard without coupling caps (I have seen those attempts) will be useless.
    $endgroup$
    – user287001
    Apr 5 at 11:39










  • $begingroup$
    Ok friend I will even buy a comparator and I will check with it.
    $endgroup$
    – Nihal
    Apr 5 at 18:34















$begingroup$
Thank you for your response friend, i will update it after changing the opp amp.
$endgroup$
– Nihal
Apr 5 at 11:29




$begingroup$
Thank you for your response friend, i will update it after changing the opp amp.
$endgroup$
– Nihal
Apr 5 at 11:29




2




2




$begingroup$
@Nihal Comparators have other precautions. They are high speed circuits like logic parts. You must have acceptably short wires and coupling capacitors between supply voltage inputs. Making the circuit with 0,5 meter long wires onto a breadboard without coupling caps (I have seen those attempts) will be useless.
$endgroup$
– user287001
Apr 5 at 11:39




$begingroup$
@Nihal Comparators have other precautions. They are high speed circuits like logic parts. You must have acceptably short wires and coupling capacitors between supply voltage inputs. Making the circuit with 0,5 meter long wires onto a breadboard without coupling caps (I have seen those attempts) will be useless.
$endgroup$
– user287001
Apr 5 at 11:39












$begingroup$
Ok friend I will even buy a comparator and I will check with it.
$endgroup$
– Nihal
Apr 5 at 18:34




$begingroup$
Ok friend I will even buy a comparator and I will check with it.
$endgroup$
– Nihal
Apr 5 at 18:34











1












$begingroup$

Op-amps are susceptible to latch-up. Recovering from saturation at the rails is not an automatic thing. The ratings you are reading a for the op amp working in a feedback mode, not an open loop mode. You would need to find an op amp designed to minimize latch-up, or better yet, when you need a comparator, buy a comparator.






share|improve this answer









$endgroup$








  • 1




    $begingroup$
    Yes, and/or phase inversion, depending on the op-amp type.
    $endgroup$
    – Peter Mortensen
    Apr 5 at 17:10
















1












$begingroup$

Op-amps are susceptible to latch-up. Recovering from saturation at the rails is not an automatic thing. The ratings you are reading a for the op amp working in a feedback mode, not an open loop mode. You would need to find an op amp designed to minimize latch-up, or better yet, when you need a comparator, buy a comparator.






share|improve this answer









$endgroup$








  • 1




    $begingroup$
    Yes, and/or phase inversion, depending on the op-amp type.
    $endgroup$
    – Peter Mortensen
    Apr 5 at 17:10














1












1








1





$begingroup$

Op-amps are susceptible to latch-up. Recovering from saturation at the rails is not an automatic thing. The ratings you are reading a for the op amp working in a feedback mode, not an open loop mode. You would need to find an op amp designed to minimize latch-up, or better yet, when you need a comparator, buy a comparator.






share|improve this answer









$endgroup$



Op-amps are susceptible to latch-up. Recovering from saturation at the rails is not an automatic thing. The ratings you are reading a for the op amp working in a feedback mode, not an open loop mode. You would need to find an op amp designed to minimize latch-up, or better yet, when you need a comparator, buy a comparator.







share|improve this answer












share|improve this answer



share|improve this answer










answered Apr 5 at 12:33









Scott SeidmanScott Seidman

22.7k43286




22.7k43286







  • 1




    $begingroup$
    Yes, and/or phase inversion, depending on the op-amp type.
    $endgroup$
    – Peter Mortensen
    Apr 5 at 17:10













  • 1




    $begingroup$
    Yes, and/or phase inversion, depending on the op-amp type.
    $endgroup$
    – Peter Mortensen
    Apr 5 at 17:10








1




1




$begingroup$
Yes, and/or phase inversion, depending on the op-amp type.
$endgroup$
– Peter Mortensen
Apr 5 at 17:10





$begingroup$
Yes, and/or phase inversion, depending on the op-amp type.
$endgroup$
– Peter Mortensen
Apr 5 at 17:10












1












$begingroup$

[modified to run on +9/-6 volt rails]
You may try this, if you want a discrete solution. The delay, without input protection resistor, should be about 20 nanoseconds.





schematic





simulate this circuit – Schematic created using CircuitLab



The speed will be limited by Rin (10Kohm) and a minimal Miller Effect Cin (20pF?), thus propagation delay will be about 0.2 us (200 nanosecond).






share|improve this answer











$endgroup$












  • $begingroup$
    What is it? A Schmitt trigger?
    $endgroup$
    – Peter Mortensen
    Apr 5 at 16:21










  • $begingroup$
    The differential pair is biased at VDD/2. R8 does provide 1% positive feedback, to reduce the risk of oscillation during the linear region. Notice I included over-voltage protection.
    $endgroup$
    – analogsystemsrf
    Apr 6 at 3:28















1












$begingroup$

[modified to run on +9/-6 volt rails]
You may try this, if you want a discrete solution. The delay, without input protection resistor, should be about 20 nanoseconds.





schematic





simulate this circuit – Schematic created using CircuitLab



The speed will be limited by Rin (10Kohm) and a minimal Miller Effect Cin (20pF?), thus propagation delay will be about 0.2 us (200 nanosecond).






share|improve this answer











$endgroup$












  • $begingroup$
    What is it? A Schmitt trigger?
    $endgroup$
    – Peter Mortensen
    Apr 5 at 16:21










  • $begingroup$
    The differential pair is biased at VDD/2. R8 does provide 1% positive feedback, to reduce the risk of oscillation during the linear region. Notice I included over-voltage protection.
    $endgroup$
    – analogsystemsrf
    Apr 6 at 3:28













1












1








1





$begingroup$

[modified to run on +9/-6 volt rails]
You may try this, if you want a discrete solution. The delay, without input protection resistor, should be about 20 nanoseconds.





schematic





simulate this circuit – Schematic created using CircuitLab



The speed will be limited by Rin (10Kohm) and a minimal Miller Effect Cin (20pF?), thus propagation delay will be about 0.2 us (200 nanosecond).






share|improve this answer











$endgroup$



[modified to run on +9/-6 volt rails]
You may try this, if you want a discrete solution. The delay, without input protection resistor, should be about 20 nanoseconds.





schematic





simulate this circuit – Schematic created using CircuitLab



The speed will be limited by Rin (10Kohm) and a minimal Miller Effect Cin (20pF?), thus propagation delay will be about 0.2 us (200 nanosecond).







share|improve this answer














share|improve this answer



share|improve this answer








edited 21 hours ago

























answered Apr 5 at 15:59









analogsystemsrfanalogsystemsrf

16k2822




16k2822











  • $begingroup$
    What is it? A Schmitt trigger?
    $endgroup$
    – Peter Mortensen
    Apr 5 at 16:21










  • $begingroup$
    The differential pair is biased at VDD/2. R8 does provide 1% positive feedback, to reduce the risk of oscillation during the linear region. Notice I included over-voltage protection.
    $endgroup$
    – analogsystemsrf
    Apr 6 at 3:28
















  • $begingroup$
    What is it? A Schmitt trigger?
    $endgroup$
    – Peter Mortensen
    Apr 5 at 16:21










  • $begingroup$
    The differential pair is biased at VDD/2. R8 does provide 1% positive feedback, to reduce the risk of oscillation during the linear region. Notice I included over-voltage protection.
    $endgroup$
    – analogsystemsrf
    Apr 6 at 3:28















$begingroup$
What is it? A Schmitt trigger?
$endgroup$
– Peter Mortensen
Apr 5 at 16:21




$begingroup$
What is it? A Schmitt trigger?
$endgroup$
– Peter Mortensen
Apr 5 at 16:21












$begingroup$
The differential pair is biased at VDD/2. R8 does provide 1% positive feedback, to reduce the risk of oscillation during the linear region. Notice I included over-voltage protection.
$endgroup$
– analogsystemsrf
Apr 6 at 3:28




$begingroup$
The differential pair is biased at VDD/2. R8 does provide 1% positive feedback, to reduce the risk of oscillation during the linear region. Notice I included over-voltage protection.
$endgroup$
– analogsystemsrf
Apr 6 at 3:28











0












$begingroup$

Most garden variety op-amps have internal compensation in the form of a chip capacitor.



This makes them very slow, but more stable in analog circuits.



Why not use a cheap comparator like LM393?






share|improve this answer











$endgroup$












  • $begingroup$
    Thank you friend it works good while using comparator LM339.
    $endgroup$
    – Nihal
    23 hours ago















0












$begingroup$

Most garden variety op-amps have internal compensation in the form of a chip capacitor.



This makes them very slow, but more stable in analog circuits.



Why not use a cheap comparator like LM393?






share|improve this answer











$endgroup$












  • $begingroup$
    Thank you friend it works good while using comparator LM339.
    $endgroup$
    – Nihal
    23 hours ago













0












0








0





$begingroup$

Most garden variety op-amps have internal compensation in the form of a chip capacitor.



This makes them very slow, but more stable in analog circuits.



Why not use a cheap comparator like LM393?






share|improve this answer











$endgroup$



Most garden variety op-amps have internal compensation in the form of a chip capacitor.



This makes them very slow, but more stable in analog circuits.



Why not use a cheap comparator like LM393?







share|improve this answer














share|improve this answer



share|improve this answer








edited Apr 5 at 14:25









Renan

4,32222244




4,32222244










answered Apr 5 at 11:04









AutisticAutistic

7,50921633




7,50921633











  • $begingroup$
    Thank you friend it works good while using comparator LM339.
    $endgroup$
    – Nihal
    23 hours ago
















  • $begingroup$
    Thank you friend it works good while using comparator LM339.
    $endgroup$
    – Nihal
    23 hours ago















$begingroup$
Thank you friend it works good while using comparator LM339.
$endgroup$
– Nihal
23 hours ago




$begingroup$
Thank you friend it works good while using comparator LM339.
$endgroup$
– Nihal
23 hours ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Electrical Engineering Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f430885%2foperational-amplifier-as-a-comparator-at-high-frequency%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

getting Checkpoint VPN SSL Network Extender working in the command lineHow to connect to CheckPoint VPN on Ubuntu 18.04LTS?Will the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayVPN SSL Network Extender in FirefoxLinux Checkpoint SNX tool configuration issuesCheck Point - Connect under Linux - snx + OTPSNX VPN Ububuntu 18.XXUsing Checkpoint VPN SSL Network Extender CLI with certificateVPN with network manager (nm-applet) is not workingWill the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayImport VPN config files to NetworkManager from command lineTrouble connecting to VPN using network-manager, while command line worksStart a VPN connection with PPTP protocol on command linestarting a docker service daemon breaks the vpn networkCan't connect to vpn with Network-managerVPN SSL Network Extender in FirefoxUsing Checkpoint VPN SSL Network Extender CLI with certificate

NetworkManager fails with “Could not find source connection”Trouble connecting to VPN using network-manager, while command line worksHow can I be notified about state changes to a VPN adapterBacktrack 5 R3 - Refuses to connect to VPNFeed all traffic through OpenVPN for a specific network namespace onlyRun daemon on startup in Debian once openvpn connection establishedpfsense tcp connection between openvpn and lan is brokenInternet connection problem with web browsers onlyWhy does NetworkManager explicitly support tun/tap devices?Browser issues with VPNTwo IP addresses assigned to the same network card - OpenVPN issues?Cannot connect to WiFi with nmcli, although secrets are provided

대한민국 목차 국명 지리 역사 정치 국방 경제 사회 문화 국제 순위 관련 항목 각주 외부 링크 둘러보기 메뉴북위 37° 34′ 08″ 동경 126° 58′ 36″ / 북위 37.568889° 동경 126.976667°  / 37.568889; 126.976667ehThe Korean Repository문단을 편집문단을 편집추가해Clarkson PLC 사Report for Selected Countries and Subjects-Korea“Human Development Index and its components: P.198”“http://www.law.go.kr/%EB%B2%95%EB%A0%B9/%EB%8C%80%ED%95%9C%EB%AF%BC%EA%B5%AD%EA%B5%AD%EA%B8%B0%EB%B2%95”"한국은 국제법상 한반도 유일 합법정부 아니다" - 오마이뉴스 모바일Report for Selected Countries and Subjects: South Korea격동의 역사와 함께한 조선일보 90년 : 조선일보 인수해 혁신시킨 신석우, 임시정부 때는 '대한민국' 국호(國號) 정해《우리가 몰랐던 우리 역사: 나라 이름의 비밀을 찾아가는 역사 여행》“남북 공식호칭 ‘남한’‘북한’으로 쓴다”“Corea 대 Korea, 누가 이긴 거야?”국내기후자료 - 한국[김대중 前 대통령 서거] 과감한 구조개혁 'DJ노믹스'로 최단기간 환란극복 :: 네이버 뉴스“이라크 "韓-쿠르드 유전개발 MOU 승인 안해"(종합)”“해외 우리국민 추방사례 43%가 일본”차기전차 K2'흑표'의 세계 최고 전력 분석, 쿠키뉴스 엄기영, 2007-03-02두산인프라, 헬기잡는 장갑차 'K21'...내년부터 공급, 고뉴스 이대준, 2008-10-30과거 내용 찾기mk 뉴스 - 구매력 기준으로 보면 한국 1인당 소득 3만弗과거 내용 찾기"The N-11: More Than an Acronym"Archived조선일보 최우석, 2008-11-01Global 500 2008: Countries - South Korea“몇년째 '시한폭탄'... 가계부채, 올해는 터질까”가구당 부채 5000만원 처음 넘어서“‘빚’으로 내몰리는 사회.. 위기의 가계대출”“[경제365] 공공부문 부채 급증…800조 육박”“"소득 양극화 다소 완화...불평등은 여전"”“공정사회·공생발전 한참 멀었네”iSuppli,08年2QのDRAMシェア・ランキングを発表(08/8/11)South Korea dominates shipbuilding industry | Stock Market News & Stocks to Watch from StraightStocks한국 자동차 생산, 3년 연속 세계 5위자동차수출 '현대-삼성 웃고 기아-대우-쌍용은 울고' 과거 내용 찾기동반성장위 창립 1주년 맞아Archived"중기적합 3개업종 합의 무시한 채 선정"李대통령, 사업 무분별 확장 소상공인 생계 위협 질타삼성-LG, 서민업종인 빵·분식사업 잇따라 철수상생은 뒷전…SSM ‘몸집 불리기’ 혈안Archived“경부고속도에 '아시안하이웨이' 표지판”'철의 실크로드' 앞서 '말(言)의 실크로드'부터, 프레시안 정창현, 2008-10-01“'서울 지하철은 안전한가?'”“서울시 “올해 안에 모든 지하철역 스크린도어 설치””“부산지하철 1,2호선 승강장 안전펜스 설치 완료”“전교조, 정부 노조 통계서 처음 빠져”“[Weekly BIZ] 도요타 '제로 이사회'가 리콜 사태 불러들였다”“S Korea slams high tuition costs”““정치가 여론 양극화 부채질… 합리주의 절실””“〈"`촛불집회'는 민주주의의 질적 변화 상징"〉”““촛불집회가 민주주의 왜곡 초래””“국민 65%, "한국 노사관계 대립적"”“한국 국가경쟁력 27위‥노사관계 '꼴찌'”“제대로 형성되지 않은 대한민국 이념지형”“[신년기획-갈등의 시대] 갈등지수 OECD 4위…사회적 손실 GDP 27% 무려 300조”“2012 총선-대선의 키워드는 '국민과 소통'”“한국 삶의 질 27위, 2000년과 2008년 연속 하위권 머물러”“[해피 코리아] 행복점수 68점…해외 평가선 '낙제점'”“한국 어린이·청소년 행복지수 3년 연속 OECD ‘꼴찌’”“한국 이혼율 OECD중 8위”“[통계청] 한국 이혼율 OECD 4위”“오피니언 [이렇게 생각한다] `부부의 날` 에 돌아본 이혼율 1위 한국”“Suicide Rates by Country, Global Health Observatory Data Repository.”“1. 또 다른 차별”“오피니언 [편집자에게] '왕따'와 '패거리 정치' 심리는 닮은꼴”“[미래한국리포트] 무한경쟁에 빠진 대한민국”“대학생 98% "외모가 경쟁력이라는 말 동의"”“특급호텔 웨딩·200만원대 유모차… "남보다 더…" 호화病, 고질병 됐다”“[스트레스 공화국] ① 경쟁사회, 스트레스 쌓인다”““매일 30여명 자살 한국, 의사보다 무속인에…””“"자살 부르는 '우울증', 환자 중 85% 치료 안 받아"”“정신병원을 가다”“대한민국도 ‘묻지마 범죄’,안전지대 아니다”“유엔 "학생 '성적 지향'에 따른 차별 금지하라"”“유엔아동권리위원회 보고서 및 번역본 원문”“고졸 성공스토리 담은 '제빵왕 김탁구' 드라마 나온다”“‘빛 좋은 개살구’ 고졸 취업…실습 대신 착취”원본 문서“정신건강, 사회적 편견부터 고쳐드립니다”‘소통’과 ‘행복’에 목 마른 사회가 잠들어 있던 ‘심리학’ 깨웠다“[포토] 사유리-곽금주 교수의 유쾌한 심리상담”“"올해 한국인 평균 영화관람횟수 세계 1위"(종합)”“[게임연중기획] 게임은 문화다-여가활동 1순위 게임”“영화속 ‘영어 지상주의’ …“왠지 씁쓸한데””“2월 `신문 부수 인증기관` 지정..방송법 후속작업”“무료신문 성장동력 ‘차별성’과 ‘갈등해소’”대한민국 국회 법률지식정보시스템"Pew Research Center's Religion & Public Life Project: South Korea"“amp;vwcd=MT_ZTITLE&path=인구·가구%20>%20인구총조사%20>%20인구부문%20>%20 총조사인구(2005)%20>%20전수부문&oper_YN=Y&item=&keyword=종교별%20인구& amp;lang_mode=kor&list_id= 2005년 통계청 인구 총조사”원본 문서“한국인이 좋아하는 취미와 운동 (2004-2009)”“한국인이 좋아하는 취미와 운동 (2004-2014)”Archived“한국, `부분적 언론자유국' 강등〈프리덤하우스〉”“국경없는기자회 "한국, 인터넷감시 대상국"”“한국, 조선산업 1위 유지(S. Korea Stays Top Shipbuilding Nation) RZD-Partner Portal”원본 문서“한국, 4년 만에 ‘선박건조 1위’”“옛 마산시,인터넷속도 세계 1위”“"한국 초고속 인터넷망 세계1위"”“인터넷·휴대폰 요금, 외국보다 훨씬 비싸”“한국 관세행정 6년 연속 세계 '1위'”“한국 교통사고 사망자 수 OECD 회원국 중 2위”“결핵 후진국' 한국, 환자가 급증한 이유는”“수술은 신중해야… 자칫하면 생명 위협”대한민국분류대한민국의 지도대한민국 정부대표 다국어포털대한민국 전자정부대한민국 국회한국방송공사about korea and information korea브리태니커 백과사전(한국편)론리플래닛의 정보(한국편)CIA의 세계 정보(한국편)마리암 부디아 (Mariam Budia),『한국: 하늘이 내린 한 폭의 그림』, 서울: 트랜스라틴 19호 (2012년 3월)대한민국ehehehehehehehehehehehehehehWorldCat132441370n791268020000 0001 2308 81034078029-6026373548cb11863345f(데이터)00573706ge128495