RSA: Danger of using p to create qReducing key shares in Damgård-Dupont threshold RSAVerify a RSA signature using only RSA encryptionFinding Private Key $d$ using RSAInverting RSA using an oracleRSA encryption using multiplicationRSA encryption using euclidean alorithmBreaking RSA using Chinese Remainder TheoremManually encrypt using RSA X509 in .NETGenerate shared secrets using RSABreaking RSA using known root

What does 'script /dev/null' do?

Is Social Media Science Fiction?

New order #4: World

Ideas for 3rd eye abilities

Is there a name of the flying bionic bird?

Is it wise to focus on putting odd beats on left when playing double bass drums?

I see my dog run

Is "plugging out" electronic devices an American expression?

Was there ever an axiom rendered a theorem?

Patience, young "Padovan"

Copycat chess is back

Finding files for which a command fails

Does a dangling wire really electrocute me if I'm standing in water?

Calculate Levenshtein distance between two strings in Python

What is the command to reset a PC without deleting any files

Does the average primeness of natural numbers tend to zero?

Pristine Bit Checking

"My colleague's body is amazing"

What is the offset in a seaplane's hull?

How to answer pointed "are you quitting" questioning when I don't want them to suspect

What do the Banks children have against barley water?

Is domain driven design an anti-SQL pattern?

Symmetry in quantum mechanics

Unbreakable Formation vs. Cry of the Carnarium



RSA: Danger of using p to create q


Reducing key shares in Damgård-Dupont threshold RSAVerify a RSA signature using only RSA encryptionFinding Private Key $d$ using RSAInverting RSA using an oracleRSA encryption using multiplicationRSA encryption using euclidean alorithmBreaking RSA using Chinese Remainder TheoremManually encrypt using RSA X509 in .NETGenerate shared secrets using RSABreaking RSA using known root













3












$begingroup$


Assume my prime generation is as follows:



  1. Pick a number $p$ between 1000 and 9999. $p=abcd$.


  2. Make sure $p$ is prime


  3. Construct $q$ such by taking the last 2 digits of $p$ and the first 2 digits of $p$, i.e. $q=cdab$


  4. Make sure $q$ is prime.


Is the resulting $n = p·q$ more easily factorable?



My gut feeling says yes but I can't see why? I thought about Coppersmith but in this case, we don't have any common bit between $p$ and $q$ that are also at the same place. Is there a weakness?










share|improve this question











$endgroup$







  • 2




    $begingroup$
    Of course, any product of two 4-digit primes is trivially factorable by trial division anyway, since there are only 1061 primes between 1000 and 9999. Add in the digit reversal requirement, and there are only 76(!) possible pairs to consider.
    $endgroup$
    – Ilmari Karonen
    Apr 6 at 1:37






  • 1




    $begingroup$
    @Nat: My fault, I added the "$= pq$" for context in an edit, and didn't notice the potential ambiguity. I see Paŭlo has already fixed it.
    $endgroup$
    – Ilmari Karonen
    2 days ago










  • $begingroup$
    I'd just like to add that this is inspired by a contest that just ended (12 minutes ago).
    $endgroup$
    – enedil
    2 days ago















3












$begingroup$


Assume my prime generation is as follows:



  1. Pick a number $p$ between 1000 and 9999. $p=abcd$.


  2. Make sure $p$ is prime


  3. Construct $q$ such by taking the last 2 digits of $p$ and the first 2 digits of $p$, i.e. $q=cdab$


  4. Make sure $q$ is prime.


Is the resulting $n = p·q$ more easily factorable?



My gut feeling says yes but I can't see why? I thought about Coppersmith but in this case, we don't have any common bit between $p$ and $q$ that are also at the same place. Is there a weakness?










share|improve this question











$endgroup$







  • 2




    $begingroup$
    Of course, any product of two 4-digit primes is trivially factorable by trial division anyway, since there are only 1061 primes between 1000 and 9999. Add in the digit reversal requirement, and there are only 76(!) possible pairs to consider.
    $endgroup$
    – Ilmari Karonen
    Apr 6 at 1:37






  • 1




    $begingroup$
    @Nat: My fault, I added the "$= pq$" for context in an edit, and didn't notice the potential ambiguity. I see Paŭlo has already fixed it.
    $endgroup$
    – Ilmari Karonen
    2 days ago










  • $begingroup$
    I'd just like to add that this is inspired by a contest that just ended (12 minutes ago).
    $endgroup$
    – enedil
    2 days ago













3












3








3





$begingroup$


Assume my prime generation is as follows:



  1. Pick a number $p$ between 1000 and 9999. $p=abcd$.


  2. Make sure $p$ is prime


  3. Construct $q$ such by taking the last 2 digits of $p$ and the first 2 digits of $p$, i.e. $q=cdab$


  4. Make sure $q$ is prime.


Is the resulting $n = p·q$ more easily factorable?



My gut feeling says yes but I can't see why? I thought about Coppersmith but in this case, we don't have any common bit between $p$ and $q$ that are also at the same place. Is there a weakness?










share|improve this question











$endgroup$




Assume my prime generation is as follows:



  1. Pick a number $p$ between 1000 and 9999. $p=abcd$.


  2. Make sure $p$ is prime


  3. Construct $q$ such by taking the last 2 digits of $p$ and the first 2 digits of $p$, i.e. $q=cdab$


  4. Make sure $q$ is prime.


Is the resulting $n = p·q$ more easily factorable?



My gut feeling says yes but I can't see why? I thought about Coppersmith but in this case, we don't have any common bit between $p$ and $q$ that are also at the same place. Is there a weakness?







rsa






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 2 days ago









Paŭlo Ebermann

18.9k560106




18.9k560106










asked Apr 5 at 17:00









S. L.S. L.

957




957







  • 2




    $begingroup$
    Of course, any product of two 4-digit primes is trivially factorable by trial division anyway, since there are only 1061 primes between 1000 and 9999. Add in the digit reversal requirement, and there are only 76(!) possible pairs to consider.
    $endgroup$
    – Ilmari Karonen
    Apr 6 at 1:37






  • 1




    $begingroup$
    @Nat: My fault, I added the "$= pq$" for context in an edit, and didn't notice the potential ambiguity. I see Paŭlo has already fixed it.
    $endgroup$
    – Ilmari Karonen
    2 days ago










  • $begingroup$
    I'd just like to add that this is inspired by a contest that just ended (12 minutes ago).
    $endgroup$
    – enedil
    2 days ago












  • 2




    $begingroup$
    Of course, any product of two 4-digit primes is trivially factorable by trial division anyway, since there are only 1061 primes between 1000 and 9999. Add in the digit reversal requirement, and there are only 76(!) possible pairs to consider.
    $endgroup$
    – Ilmari Karonen
    Apr 6 at 1:37






  • 1




    $begingroup$
    @Nat: My fault, I added the "$= pq$" for context in an edit, and didn't notice the potential ambiguity. I see Paŭlo has already fixed it.
    $endgroup$
    – Ilmari Karonen
    2 days ago










  • $begingroup$
    I'd just like to add that this is inspired by a contest that just ended (12 minutes ago).
    $endgroup$
    – enedil
    2 days ago







2




2




$begingroup$
Of course, any product of two 4-digit primes is trivially factorable by trial division anyway, since there are only 1061 primes between 1000 and 9999. Add in the digit reversal requirement, and there are only 76(!) possible pairs to consider.
$endgroup$
– Ilmari Karonen
Apr 6 at 1:37




$begingroup$
Of course, any product of two 4-digit primes is trivially factorable by trial division anyway, since there are only 1061 primes between 1000 and 9999. Add in the digit reversal requirement, and there are only 76(!) possible pairs to consider.
$endgroup$
– Ilmari Karonen
Apr 6 at 1:37




1




1




$begingroup$
@Nat: My fault, I added the "$= pq$" for context in an edit, and didn't notice the potential ambiguity. I see Paŭlo has already fixed it.
$endgroup$
– Ilmari Karonen
2 days ago




$begingroup$
@Nat: My fault, I added the "$= pq$" for context in an edit, and didn't notice the potential ambiguity. I see Paŭlo has already fixed it.
$endgroup$
– Ilmari Karonen
2 days ago












$begingroup$
I'd just like to add that this is inspired by a contest that just ended (12 minutes ago).
$endgroup$
– enedil
2 days ago




$begingroup$
I'd just like to add that this is inspired by a contest that just ended (12 minutes ago).
$endgroup$
– enedil
2 days ago










2 Answers
2






active

oldest

votes


















9












$begingroup$

You don't need anything fancy like Coppersmith, just simple algebra. The idea is to translate the equations we have involving the digits of $p$ and $q$ in base $B$ ($B = 100$ in your example) into equations involving the digits of $n$ in base $B$, which we know. You have $p = x B + y$ and $q = y B + x$, with $0 lt x, y lt B$. Then $n = x y B^2 + (x^2 + y^2) B + x y$.



The rightmost digit of $n$ in base $B$ is $(x y) bmod B$. Since $x,y le B-1$, $(x^2 + y^2) B + x y le 2 (B-1)^2 B + (B-1)^2 lt 2 (B-1)^2 (B+1) = 2 (B-1) (B^2-1) lt 2 B^3$. Hence the $B^3$ digit of $n$ is the $B$ digit of $x y$ plus $z$ where $0 le z lt 2$, i.e. $z in 0, 1$. So by reading the digits of $n$ in base $B$, we get the digits of $x y$ in base $B$, up to two possibilities, giving just two possibilities for $x y$ itself: $x y in W_0, W_1$.



Injecting this knowledge into the equation above gives us $x^2 + y^2 = (n - W_z (B^2 + 1)) / B$. And of course knowing both $x^2 + y^2$ and $x y$ gives $x$ and $y$.






share|improve this answer











$endgroup$












  • $begingroup$
    Thanks for the explanation! I get most of it but wouldn't $n= xyB^2 + Bx^2 + By^2 + xy$? Do the other equations hold?
    $endgroup$
    – S. L.
    Apr 5 at 19:03










  • $begingroup$
    @S.L. Woops, different equation, but same principle.
    $endgroup$
    – Gilles
    Apr 5 at 20:39


















3












$begingroup$

Here's how to recover $x, y$ in a way that's easier than factoring $n$ (I'll use the notation $x, y$ rather than your notation $ab, cd$):



We have $n = xyB^2 + (x^2+y^2)B + xy$



First, compute $n bmod B$, that gives you $xy bmod B$



Then, compute $lfloor (n - B^2(xy bmod B)) / B^3 rfloor$; this gives you $xy / B + epsilon$, where $0 le epsilon le 2$



Pasting those two together will give you a total of three possibilities of $xy$.



Then, for each possibility, compute $(n - xyB^2 - xy) / B + 2xy$ and $(n - xyB^2 - xy) / B - 2xy$; if the guess of $epsilon$ is correct, these will be $(x+y)^2$ and $(x-y)^2$; take squareroots, and extract $x, y$ directly.



(Thanks for Giles for pointing out this last part)






share|improve this answer











$endgroup$












  • $begingroup$
    Yeah, right, the $B^3$ digit of $n$ gives the other digit of $x y$. And there's no need to factor anything: once you know $x y$, you know $x^2 + y^2$.
    $endgroup$
    – Gilles
    Apr 5 at 20:39










  • $begingroup$
    @Gilles: yup, you're right; I'll update the answer
    $endgroup$
    – poncho
    Apr 5 at 21:01










  • $begingroup$
    I don't get this part: Then, compute $⌊(n−B^2(xymod B))/B^3⌋$ this gives you $xy/B+ϵ$, where $0≤ϵ≤2$. I have $xymod B$ but not $xy$?
    $endgroup$
    – S. L.
    Apr 5 at 21:10







  • 1




    $begingroup$
    $(n - B^2(xy bmod B)) / B^3 = lfloor(xy/B) rfloor + x^2 / B^2 + y^2 / B^2 + xy / B^3$; we know that $x^2 / B^2, y^2 / B^2, xy / B^3$ are all less than 1 (and $ge 0$), and so the sum must be in the interval $[0, 3)$, that is, two or less once you round down...
    $endgroup$
    – poncho
    Apr 5 at 22:18












Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "281"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcrypto.stackexchange.com%2fquestions%2f68562%2frsa-danger-of-using-p-to-create-q%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









9












$begingroup$

You don't need anything fancy like Coppersmith, just simple algebra. The idea is to translate the equations we have involving the digits of $p$ and $q$ in base $B$ ($B = 100$ in your example) into equations involving the digits of $n$ in base $B$, which we know. You have $p = x B + y$ and $q = y B + x$, with $0 lt x, y lt B$. Then $n = x y B^2 + (x^2 + y^2) B + x y$.



The rightmost digit of $n$ in base $B$ is $(x y) bmod B$. Since $x,y le B-1$, $(x^2 + y^2) B + x y le 2 (B-1)^2 B + (B-1)^2 lt 2 (B-1)^2 (B+1) = 2 (B-1) (B^2-1) lt 2 B^3$. Hence the $B^3$ digit of $n$ is the $B$ digit of $x y$ plus $z$ where $0 le z lt 2$, i.e. $z in 0, 1$. So by reading the digits of $n$ in base $B$, we get the digits of $x y$ in base $B$, up to two possibilities, giving just two possibilities for $x y$ itself: $x y in W_0, W_1$.



Injecting this knowledge into the equation above gives us $x^2 + y^2 = (n - W_z (B^2 + 1)) / B$. And of course knowing both $x^2 + y^2$ and $x y$ gives $x$ and $y$.






share|improve this answer











$endgroup$












  • $begingroup$
    Thanks for the explanation! I get most of it but wouldn't $n= xyB^2 + Bx^2 + By^2 + xy$? Do the other equations hold?
    $endgroup$
    – S. L.
    Apr 5 at 19:03










  • $begingroup$
    @S.L. Woops, different equation, but same principle.
    $endgroup$
    – Gilles
    Apr 5 at 20:39















9












$begingroup$

You don't need anything fancy like Coppersmith, just simple algebra. The idea is to translate the equations we have involving the digits of $p$ and $q$ in base $B$ ($B = 100$ in your example) into equations involving the digits of $n$ in base $B$, which we know. You have $p = x B + y$ and $q = y B + x$, with $0 lt x, y lt B$. Then $n = x y B^2 + (x^2 + y^2) B + x y$.



The rightmost digit of $n$ in base $B$ is $(x y) bmod B$. Since $x,y le B-1$, $(x^2 + y^2) B + x y le 2 (B-1)^2 B + (B-1)^2 lt 2 (B-1)^2 (B+1) = 2 (B-1) (B^2-1) lt 2 B^3$. Hence the $B^3$ digit of $n$ is the $B$ digit of $x y$ plus $z$ where $0 le z lt 2$, i.e. $z in 0, 1$. So by reading the digits of $n$ in base $B$, we get the digits of $x y$ in base $B$, up to two possibilities, giving just two possibilities for $x y$ itself: $x y in W_0, W_1$.



Injecting this knowledge into the equation above gives us $x^2 + y^2 = (n - W_z (B^2 + 1)) / B$. And of course knowing both $x^2 + y^2$ and $x y$ gives $x$ and $y$.






share|improve this answer











$endgroup$












  • $begingroup$
    Thanks for the explanation! I get most of it but wouldn't $n= xyB^2 + Bx^2 + By^2 + xy$? Do the other equations hold?
    $endgroup$
    – S. L.
    Apr 5 at 19:03










  • $begingroup$
    @S.L. Woops, different equation, but same principle.
    $endgroup$
    – Gilles
    Apr 5 at 20:39













9












9








9





$begingroup$

You don't need anything fancy like Coppersmith, just simple algebra. The idea is to translate the equations we have involving the digits of $p$ and $q$ in base $B$ ($B = 100$ in your example) into equations involving the digits of $n$ in base $B$, which we know. You have $p = x B + y$ and $q = y B + x$, with $0 lt x, y lt B$. Then $n = x y B^2 + (x^2 + y^2) B + x y$.



The rightmost digit of $n$ in base $B$ is $(x y) bmod B$. Since $x,y le B-1$, $(x^2 + y^2) B + x y le 2 (B-1)^2 B + (B-1)^2 lt 2 (B-1)^2 (B+1) = 2 (B-1) (B^2-1) lt 2 B^3$. Hence the $B^3$ digit of $n$ is the $B$ digit of $x y$ plus $z$ where $0 le z lt 2$, i.e. $z in 0, 1$. So by reading the digits of $n$ in base $B$, we get the digits of $x y$ in base $B$, up to two possibilities, giving just two possibilities for $x y$ itself: $x y in W_0, W_1$.



Injecting this knowledge into the equation above gives us $x^2 + y^2 = (n - W_z (B^2 + 1)) / B$. And of course knowing both $x^2 + y^2$ and $x y$ gives $x$ and $y$.






share|improve this answer











$endgroup$



You don't need anything fancy like Coppersmith, just simple algebra. The idea is to translate the equations we have involving the digits of $p$ and $q$ in base $B$ ($B = 100$ in your example) into equations involving the digits of $n$ in base $B$, which we know. You have $p = x B + y$ and $q = y B + x$, with $0 lt x, y lt B$. Then $n = x y B^2 + (x^2 + y^2) B + x y$.



The rightmost digit of $n$ in base $B$ is $(x y) bmod B$. Since $x,y le B-1$, $(x^2 + y^2) B + x y le 2 (B-1)^2 B + (B-1)^2 lt 2 (B-1)^2 (B+1) = 2 (B-1) (B^2-1) lt 2 B^3$. Hence the $B^3$ digit of $n$ is the $B$ digit of $x y$ plus $z$ where $0 le z lt 2$, i.e. $z in 0, 1$. So by reading the digits of $n$ in base $B$, we get the digits of $x y$ in base $B$, up to two possibilities, giving just two possibilities for $x y$ itself: $x y in W_0, W_1$.



Injecting this knowledge into the equation above gives us $x^2 + y^2 = (n - W_z (B^2 + 1)) / B$. And of course knowing both $x^2 + y^2$ and $x y$ gives $x$ and $y$.







share|improve this answer














share|improve this answer



share|improve this answer








edited Apr 5 at 20:38

























answered Apr 5 at 17:27









GillesGilles

8,42232756




8,42232756











  • $begingroup$
    Thanks for the explanation! I get most of it but wouldn't $n= xyB^2 + Bx^2 + By^2 + xy$? Do the other equations hold?
    $endgroup$
    – S. L.
    Apr 5 at 19:03










  • $begingroup$
    @S.L. Woops, different equation, but same principle.
    $endgroup$
    – Gilles
    Apr 5 at 20:39
















  • $begingroup$
    Thanks for the explanation! I get most of it but wouldn't $n= xyB^2 + Bx^2 + By^2 + xy$? Do the other equations hold?
    $endgroup$
    – S. L.
    Apr 5 at 19:03










  • $begingroup$
    @S.L. Woops, different equation, but same principle.
    $endgroup$
    – Gilles
    Apr 5 at 20:39















$begingroup$
Thanks for the explanation! I get most of it but wouldn't $n= xyB^2 + Bx^2 + By^2 + xy$? Do the other equations hold?
$endgroup$
– S. L.
Apr 5 at 19:03




$begingroup$
Thanks for the explanation! I get most of it but wouldn't $n= xyB^2 + Bx^2 + By^2 + xy$? Do the other equations hold?
$endgroup$
– S. L.
Apr 5 at 19:03












$begingroup$
@S.L. Woops, different equation, but same principle.
$endgroup$
– Gilles
Apr 5 at 20:39




$begingroup$
@S.L. Woops, different equation, but same principle.
$endgroup$
– Gilles
Apr 5 at 20:39











3












$begingroup$

Here's how to recover $x, y$ in a way that's easier than factoring $n$ (I'll use the notation $x, y$ rather than your notation $ab, cd$):



We have $n = xyB^2 + (x^2+y^2)B + xy$



First, compute $n bmod B$, that gives you $xy bmod B$



Then, compute $lfloor (n - B^2(xy bmod B)) / B^3 rfloor$; this gives you $xy / B + epsilon$, where $0 le epsilon le 2$



Pasting those two together will give you a total of three possibilities of $xy$.



Then, for each possibility, compute $(n - xyB^2 - xy) / B + 2xy$ and $(n - xyB^2 - xy) / B - 2xy$; if the guess of $epsilon$ is correct, these will be $(x+y)^2$ and $(x-y)^2$; take squareroots, and extract $x, y$ directly.



(Thanks for Giles for pointing out this last part)






share|improve this answer











$endgroup$












  • $begingroup$
    Yeah, right, the $B^3$ digit of $n$ gives the other digit of $x y$. And there's no need to factor anything: once you know $x y$, you know $x^2 + y^2$.
    $endgroup$
    – Gilles
    Apr 5 at 20:39










  • $begingroup$
    @Gilles: yup, you're right; I'll update the answer
    $endgroup$
    – poncho
    Apr 5 at 21:01










  • $begingroup$
    I don't get this part: Then, compute $⌊(n−B^2(xymod B))/B^3⌋$ this gives you $xy/B+ϵ$, where $0≤ϵ≤2$. I have $xymod B$ but not $xy$?
    $endgroup$
    – S. L.
    Apr 5 at 21:10







  • 1




    $begingroup$
    $(n - B^2(xy bmod B)) / B^3 = lfloor(xy/B) rfloor + x^2 / B^2 + y^2 / B^2 + xy / B^3$; we know that $x^2 / B^2, y^2 / B^2, xy / B^3$ are all less than 1 (and $ge 0$), and so the sum must be in the interval $[0, 3)$, that is, two or less once you round down...
    $endgroup$
    – poncho
    Apr 5 at 22:18
















3












$begingroup$

Here's how to recover $x, y$ in a way that's easier than factoring $n$ (I'll use the notation $x, y$ rather than your notation $ab, cd$):



We have $n = xyB^2 + (x^2+y^2)B + xy$



First, compute $n bmod B$, that gives you $xy bmod B$



Then, compute $lfloor (n - B^2(xy bmod B)) / B^3 rfloor$; this gives you $xy / B + epsilon$, where $0 le epsilon le 2$



Pasting those two together will give you a total of three possibilities of $xy$.



Then, for each possibility, compute $(n - xyB^2 - xy) / B + 2xy$ and $(n - xyB^2 - xy) / B - 2xy$; if the guess of $epsilon$ is correct, these will be $(x+y)^2$ and $(x-y)^2$; take squareroots, and extract $x, y$ directly.



(Thanks for Giles for pointing out this last part)






share|improve this answer











$endgroup$












  • $begingroup$
    Yeah, right, the $B^3$ digit of $n$ gives the other digit of $x y$. And there's no need to factor anything: once you know $x y$, you know $x^2 + y^2$.
    $endgroup$
    – Gilles
    Apr 5 at 20:39










  • $begingroup$
    @Gilles: yup, you're right; I'll update the answer
    $endgroup$
    – poncho
    Apr 5 at 21:01










  • $begingroup$
    I don't get this part: Then, compute $⌊(n−B^2(xymod B))/B^3⌋$ this gives you $xy/B+ϵ$, where $0≤ϵ≤2$. I have $xymod B$ but not $xy$?
    $endgroup$
    – S. L.
    Apr 5 at 21:10







  • 1




    $begingroup$
    $(n - B^2(xy bmod B)) / B^3 = lfloor(xy/B) rfloor + x^2 / B^2 + y^2 / B^2 + xy / B^3$; we know that $x^2 / B^2, y^2 / B^2, xy / B^3$ are all less than 1 (and $ge 0$), and so the sum must be in the interval $[0, 3)$, that is, two or less once you round down...
    $endgroup$
    – poncho
    Apr 5 at 22:18














3












3








3





$begingroup$

Here's how to recover $x, y$ in a way that's easier than factoring $n$ (I'll use the notation $x, y$ rather than your notation $ab, cd$):



We have $n = xyB^2 + (x^2+y^2)B + xy$



First, compute $n bmod B$, that gives you $xy bmod B$



Then, compute $lfloor (n - B^2(xy bmod B)) / B^3 rfloor$; this gives you $xy / B + epsilon$, where $0 le epsilon le 2$



Pasting those two together will give you a total of three possibilities of $xy$.



Then, for each possibility, compute $(n - xyB^2 - xy) / B + 2xy$ and $(n - xyB^2 - xy) / B - 2xy$; if the guess of $epsilon$ is correct, these will be $(x+y)^2$ and $(x-y)^2$; take squareroots, and extract $x, y$ directly.



(Thanks for Giles for pointing out this last part)






share|improve this answer











$endgroup$



Here's how to recover $x, y$ in a way that's easier than factoring $n$ (I'll use the notation $x, y$ rather than your notation $ab, cd$):



We have $n = xyB^2 + (x^2+y^2)B + xy$



First, compute $n bmod B$, that gives you $xy bmod B$



Then, compute $lfloor (n - B^2(xy bmod B)) / B^3 rfloor$; this gives you $xy / B + epsilon$, where $0 le epsilon le 2$



Pasting those two together will give you a total of three possibilities of $xy$.



Then, for each possibility, compute $(n - xyB^2 - xy) / B + 2xy$ and $(n - xyB^2 - xy) / B - 2xy$; if the guess of $epsilon$ is correct, these will be $(x+y)^2$ and $(x-y)^2$; take squareroots, and extract $x, y$ directly.



(Thanks for Giles for pointing out this last part)







share|improve this answer














share|improve this answer



share|improve this answer








edited Apr 5 at 21:07

























answered Apr 5 at 20:16









ponchoponcho

93.9k2146245




93.9k2146245











  • $begingroup$
    Yeah, right, the $B^3$ digit of $n$ gives the other digit of $x y$. And there's no need to factor anything: once you know $x y$, you know $x^2 + y^2$.
    $endgroup$
    – Gilles
    Apr 5 at 20:39










  • $begingroup$
    @Gilles: yup, you're right; I'll update the answer
    $endgroup$
    – poncho
    Apr 5 at 21:01










  • $begingroup$
    I don't get this part: Then, compute $⌊(n−B^2(xymod B))/B^3⌋$ this gives you $xy/B+ϵ$, where $0≤ϵ≤2$. I have $xymod B$ but not $xy$?
    $endgroup$
    – S. L.
    Apr 5 at 21:10







  • 1




    $begingroup$
    $(n - B^2(xy bmod B)) / B^3 = lfloor(xy/B) rfloor + x^2 / B^2 + y^2 / B^2 + xy / B^3$; we know that $x^2 / B^2, y^2 / B^2, xy / B^3$ are all less than 1 (and $ge 0$), and so the sum must be in the interval $[0, 3)$, that is, two or less once you round down...
    $endgroup$
    – poncho
    Apr 5 at 22:18

















  • $begingroup$
    Yeah, right, the $B^3$ digit of $n$ gives the other digit of $x y$. And there's no need to factor anything: once you know $x y$, you know $x^2 + y^2$.
    $endgroup$
    – Gilles
    Apr 5 at 20:39










  • $begingroup$
    @Gilles: yup, you're right; I'll update the answer
    $endgroup$
    – poncho
    Apr 5 at 21:01










  • $begingroup$
    I don't get this part: Then, compute $⌊(n−B^2(xymod B))/B^3⌋$ this gives you $xy/B+ϵ$, where $0≤ϵ≤2$. I have $xymod B$ but not $xy$?
    $endgroup$
    – S. L.
    Apr 5 at 21:10







  • 1




    $begingroup$
    $(n - B^2(xy bmod B)) / B^3 = lfloor(xy/B) rfloor + x^2 / B^2 + y^2 / B^2 + xy / B^3$; we know that $x^2 / B^2, y^2 / B^2, xy / B^3$ are all less than 1 (and $ge 0$), and so the sum must be in the interval $[0, 3)$, that is, two or less once you round down...
    $endgroup$
    – poncho
    Apr 5 at 22:18
















$begingroup$
Yeah, right, the $B^3$ digit of $n$ gives the other digit of $x y$. And there's no need to factor anything: once you know $x y$, you know $x^2 + y^2$.
$endgroup$
– Gilles
Apr 5 at 20:39




$begingroup$
Yeah, right, the $B^3$ digit of $n$ gives the other digit of $x y$. And there's no need to factor anything: once you know $x y$, you know $x^2 + y^2$.
$endgroup$
– Gilles
Apr 5 at 20:39












$begingroup$
@Gilles: yup, you're right; I'll update the answer
$endgroup$
– poncho
Apr 5 at 21:01




$begingroup$
@Gilles: yup, you're right; I'll update the answer
$endgroup$
– poncho
Apr 5 at 21:01












$begingroup$
I don't get this part: Then, compute $⌊(n−B^2(xymod B))/B^3⌋$ this gives you $xy/B+ϵ$, where $0≤ϵ≤2$. I have $xymod B$ but not $xy$?
$endgroup$
– S. L.
Apr 5 at 21:10





$begingroup$
I don't get this part: Then, compute $⌊(n−B^2(xymod B))/B^3⌋$ this gives you $xy/B+ϵ$, where $0≤ϵ≤2$. I have $xymod B$ but not $xy$?
$endgroup$
– S. L.
Apr 5 at 21:10





1




1




$begingroup$
$(n - B^2(xy bmod B)) / B^3 = lfloor(xy/B) rfloor + x^2 / B^2 + y^2 / B^2 + xy / B^3$; we know that $x^2 / B^2, y^2 / B^2, xy / B^3$ are all less than 1 (and $ge 0$), and so the sum must be in the interval $[0, 3)$, that is, two or less once you round down...
$endgroup$
– poncho
Apr 5 at 22:18





$begingroup$
$(n - B^2(xy bmod B)) / B^3 = lfloor(xy/B) rfloor + x^2 / B^2 + y^2 / B^2 + xy / B^3$; we know that $x^2 / B^2, y^2 / B^2, xy / B^3$ are all less than 1 (and $ge 0$), and so the sum must be in the interval $[0, 3)$, that is, two or less once you round down...
$endgroup$
– poncho
Apr 5 at 22:18


















draft saved

draft discarded
















































Thanks for contributing an answer to Cryptography Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcrypto.stackexchange.com%2fquestions%2f68562%2frsa-danger-of-using-p-to-create-q%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

getting Checkpoint VPN SSL Network Extender working in the command lineHow to connect to CheckPoint VPN on Ubuntu 18.04LTS?Will the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayVPN SSL Network Extender in FirefoxLinux Checkpoint SNX tool configuration issuesCheck Point - Connect under Linux - snx + OTPSNX VPN Ububuntu 18.XXUsing Checkpoint VPN SSL Network Extender CLI with certificateVPN with network manager (nm-applet) is not workingWill the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayImport VPN config files to NetworkManager from command lineTrouble connecting to VPN using network-manager, while command line worksStart a VPN connection with PPTP protocol on command linestarting a docker service daemon breaks the vpn networkCan't connect to vpn with Network-managerVPN SSL Network Extender in FirefoxUsing Checkpoint VPN SSL Network Extender CLI with certificate

Cannot Extend partition with GParted The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Community Moderator Election ResultsCan't increase partition size with GParted?GParted doesn't recognize the unallocated space after my current partitionWhat is the best way to add unallocated space located before to Ubuntu 12.04 partition with GParted live?I can't figure out how to extend my Arch home partition into free spaceGparted Linux Mint 18.1 issueTrying to extend but swap partition is showing as Unknown in Gparted, shows proper from fdiskRearrange partitions in gparted to extend a partitionUnable to extend partition even though unallocated space is next to it using GPartedAllocate free space to root partitiongparted: how to merge unallocated space with a partition

Marilyn Monroe Ny fiainany manokana | Jereo koa | Meny fitetezanafanitarana azy.