Should the isomorphism theorems be seen as an “interface” between algebra and category theory?Motivation and use for category theory?Quotient objects, their universal property and the isomorphism theoremsMeaning of “a mapping preserves structures/properties”What are some examples of hard theorems in category theory?What is the relationship between the second isomorphism theorem and the third one in group theory?A doubt regarding the Category Theory definition of a group.A question about the category GrpCategory-Theoretic relation between Orbit-Stabilizer and Rank-Nullity TheoremsMonomorphisms, epimorphisms and isomorphisms of groups categoryAre objects in the category Grp actually groups or isomorphism classes of groups? Is there a difference?
How to deal with fear of taking dependencies
Ideas for 3rd eye abilities
Does the average primeness of natural numbers tend to zero?
Crop image to path created in TikZ?
Email Account under attack (really) - anything I can do?
Need help identifying/translating a plaque in Tangier, Morocco
Can the Produce Flame cantrip be used to grapple, or as an unarmed strike, in the right circumstances?
Is it legal to have the "// (c) 2019 John Smith" header in all files when there are hundreds of contributors?
Is it wise to hold on to stock that has plummeted and then stabilized?
Why was the "bread communication" in the arena of Catching Fire left out in the movie?
Does a dangling wire really electrocute me if I'm standing in water?
I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine
Is this food a bread or a loaf?
Manga about a female worker who got dragged into another world together with this high school girl and she was just told she's not needed anymore
Is "plugging out" electronic devices an American expression?
What happens when a metallic dragon and a chromatic dragon mate?
Finding files for which a command fails
How can I plot a Farey diagram?
Copycat chess is back
Pristine Bit Checking
Where to refill my bottle in India?
Can a planet have a different gravitational pull depending on its location in orbit around its sun?
COUNT(*) or MAX(id) - which is faster?
Lied on resume at previous job
Should the isomorphism theorems be seen as an “interface” between algebra and category theory?
Motivation and use for category theory?Quotient objects, their universal property and the isomorphism theoremsMeaning of “a mapping preserves structures/properties”What are some examples of hard theorems in category theory?What is the relationship between the second isomorphism theorem and the third one in group theory?A doubt regarding the Category Theory definition of a group.A question about the category GrpCategory-Theoretic relation between Orbit-Stabilizer and Rank-Nullity TheoremsMonomorphisms, epimorphisms and isomorphisms of groups categoryAre objects in the category Grp actually groups or isomorphism classes of groups? Is there a difference?
$begingroup$
My first instinct when I thought about algebra in category theory, was to try to "generalize the isomorphism theorems in category theory".
So I tried to prove the generalization of "the image of a group homomorphism is isomorphic to the quotient group generated by its kernel".
But then I found out that in category subobjects are actually defined in terms of monomorphisms, which for the category Grp is essentially implicitly using that isomorphism theorem.
So is it correct that I shouldn't be trying to prove the isomorphism theorems in category theory?
Is it correct that instead, the isomorphism theorems should be seen as justifying talking about algebraic structures (among other structuers) in terms of structure preserving morphisms? in that sense they are like the "interface" between category theoretical algebra (e.g. talking about groups in terms of group homomorphisms) and "set-theoretic" algebra (talking about groups in terms of the elements of the group, and cosets and so forth).
abstract-algebra category-theory group-isomorphism
$endgroup$
add a comment |
$begingroup$
My first instinct when I thought about algebra in category theory, was to try to "generalize the isomorphism theorems in category theory".
So I tried to prove the generalization of "the image of a group homomorphism is isomorphic to the quotient group generated by its kernel".
But then I found out that in category subobjects are actually defined in terms of monomorphisms, which for the category Grp is essentially implicitly using that isomorphism theorem.
So is it correct that I shouldn't be trying to prove the isomorphism theorems in category theory?
Is it correct that instead, the isomorphism theorems should be seen as justifying talking about algebraic structures (among other structuers) in terms of structure preserving morphisms? in that sense they are like the "interface" between category theoretical algebra (e.g. talking about groups in terms of group homomorphisms) and "set-theoretic" algebra (talking about groups in terms of the elements of the group, and cosets and so forth).
abstract-algebra category-theory group-isomorphism
$endgroup$
add a comment |
$begingroup$
My first instinct when I thought about algebra in category theory, was to try to "generalize the isomorphism theorems in category theory".
So I tried to prove the generalization of "the image of a group homomorphism is isomorphic to the quotient group generated by its kernel".
But then I found out that in category subobjects are actually defined in terms of monomorphisms, which for the category Grp is essentially implicitly using that isomorphism theorem.
So is it correct that I shouldn't be trying to prove the isomorphism theorems in category theory?
Is it correct that instead, the isomorphism theorems should be seen as justifying talking about algebraic structures (among other structuers) in terms of structure preserving morphisms? in that sense they are like the "interface" between category theoretical algebra (e.g. talking about groups in terms of group homomorphisms) and "set-theoretic" algebra (talking about groups in terms of the elements of the group, and cosets and so forth).
abstract-algebra category-theory group-isomorphism
$endgroup$
My first instinct when I thought about algebra in category theory, was to try to "generalize the isomorphism theorems in category theory".
So I tried to prove the generalization of "the image of a group homomorphism is isomorphic to the quotient group generated by its kernel".
But then I found out that in category subobjects are actually defined in terms of monomorphisms, which for the category Grp is essentially implicitly using that isomorphism theorem.
So is it correct that I shouldn't be trying to prove the isomorphism theorems in category theory?
Is it correct that instead, the isomorphism theorems should be seen as justifying talking about algebraic structures (among other structuers) in terms of structure preserving morphisms? in that sense they are like the "interface" between category theoretical algebra (e.g. talking about groups in terms of group homomorphisms) and "set-theoretic" algebra (talking about groups in terms of the elements of the group, and cosets and so forth).
abstract-algebra category-theory group-isomorphism
abstract-algebra category-theory group-isomorphism
edited 2 days ago
user56834
asked Apr 5 at 14:52
user56834user56834
3,30521253
3,30521253
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Before addressing your questions I will write here my favorite version of the first isomorphism theorem. As others have commented, you need notions of quotients, images and kernels before even attempting to enunciate such a result. There's more than one way to do this (for example, additive categories). Here we are going to work with concrete categories. Recall the notion of images.
Definition [kernel]: Let $f : X to Y$ be a function. The kernel of $f$ is the set $(a,b) in X times X mid f(a)=f(b)$.
The notion of kernel as defined here is simply the kernel pair of $f$, that is, the pullback of $X xrightarrowf Y xleftarrowf X$.
Definition [concrete quotients and congruences]: Let $(C,U)$ be a concrete category and $X$ an object of $C$. A concrete quotient of $X$ is an epimorphism $pi : X to Y$ such that $U(pi)$ is epi and for every object $Z$ of $C$ and every function $f : U(Y) to U(Z)$, the following are equivalents:
- There exists a morphism $f' : Y to Z$ such that $U(f') = f$.
- There exists a morphism $g : X to Z$ such that $U(g) = f circ U(pi)$.
The set $ker(U(pi))$ is called a congruence on $X$.
If you prefer, you can define concrete quotients as equivalence classes instead. Note that this notion of quotient coincides with topological quotients, for instance, while the usual notion of quotients (that is, epimorphisms) does not. In essence, concrete quotients allow you to complete diagrams in the base category by looking at the underlying diagrams in $Set$. A congruence on an object $X$ is essentially an equivalence relation on $U(X)$ with an associated concrete quotient of $X$. Observe, however, that congruences need not to arise only from $U(pi)$ for $pi$ a concrete quotient.
Theorem [the First Isomorphism Theorem]: Let $(C,U)$ be a concrete category, where $C$ is complete and $U$ is continuous. Let $q : X to Z$ be a morphism in $C$ such that $ker(U(q))$ is a congruence on $X$. Then the morphism $m : X/ker(U(q)) to Z$ (such that $q = m circ pi_q$) is the image of $q$.
Proof : First of all we must verify that $m$ is a monomorphism. Let $x,y in U(X)$ and $[x],[y]$ their equivalence classes regarding $ker(U(q))$. If $U(m)([x])=U(m)([y])$, then $(U(pi_q) circ U(m))(x)=(U(pi_q) circ U(m))(y)$, hence $U(pi_q circ m)(x)=U(pi_q circ m)(y)$, which implies $U(q)(x)=U(q)(y)$. Therefore $(x,y) in ker(U(q))$ and $[x]=[y]$. $U(m)$ is mono, hence $m$ is as well ($U$ is faithful).
Now let $m' : Y to Z$ be a monomorphism and $h : X to Y$ be a morphism such that $q= m' circ h$. we wish to prove the existence of $f : X/ker((U(q))) to Y$ such that $m = m' circ f$. If $(x,y) in ker(U(q))$, then $U(q)(x)=U(q)(y)$, hence $U(h)(x)=U(h)(y)$ (since $U$ is continuous and $m'$ is mono, $U(m')$ is mono). By the definition of concrete quotients, there exists a morphism $f : X/ker((U(q))) to Y$ such that $h = f circ pi_q$. Since $m' circ h = q = m circ pi_q$, we have $m' circ f circ pi_q = m circ pi_q$. Since $pi_q$ is epi, we have $m' circ f = m$.
Note that, in particular, this isomorphism theorem is valid on the category of topological spaces (with the obvious forgetful functor to $Set$)! What is the problem here? I'll leave that as an exercise.
Now, addressing the questions:
So is it correct that I shouldn't be trying to prove the isomorphism theorems in category theory?
That is not correct. However, you should be aware of the fact that general categories might not always have the structure/properties you need to talk about certain concepts. In that case, however, you should still be able to consider a particular class of categories in which you can prove your desired results.
Is it correct that instead, the isomorphism theorems are kind of like "interfaces", which justify talking about algebraic structures (among other structuers) in terms of structure preserving morphisms?
I'm not sure if I understand this question. The fact that homomorphisms between algebraic structures satisfy the isomorphism theorems is certainly a good reason to talk about structure preserving functions (instead of non-structure preserving functions) in certain scenarios. However, in other structures, where the theorem might not be valid (topological spaces for example), it is still "better" to consider structure preserving functions than simply general functions.
$endgroup$
1
$begingroup$
I wish I had known this version of the isomorphism theorem before writing my answer, +1
$endgroup$
– Max
Apr 5 at 17:47
1
$begingroup$
For the LaTeX, writingf:Xto Y
($f:Xto Y$) as opposed tofcolon Xto Y
($fcolon Xto Y$) seems easier and renders better... (at least for me).
$endgroup$
– Derek Elkins
Apr 6 at 1:27
add a comment |
$begingroup$
This isn't a full answer as I don't understand half of the question, and have asked for precision on the other half, but it's too long to be a comment
No, it's not implicitly using the isomorphism theorem, it's using the fact that (in algebraic structures) the corestriction of an injective morphism to its image is an isomorphism, which is way more basic than the first isomorphism theorem.
Then, for your questions :
$bullet$ No you shouldn't try to prove the isomorphism theorem in general categories because it simply isn't true in general. First of all, you would have to have a notion of image and of kernel, which don't usually make sense in an arbitrary category, and even when they do exist, it's not true that the theorem holds. For me to make a precise statement and give counterexamples here you have to tell me what you mean by "image" in a general category, for instance are you referring to this definition ?
$bullet$ I don't understand this question. Let me just say how I feel about the isomorphism theorem (the first one, the others are just immediate corollaries) for groups, and algebraic structures more generally, in the hope that it will shed some light on them; and perhaps you can edit your post to clarify your question.
The first isomorphism theorem is basically a tautology : it tells you that if you have a surjective morphism and declare "$x=y$" precisely when $f(x)=f(y)$ then you get an induced map on the new structure when your declaration is true, and that this induced map is injective, and has the same image as the original one. The fact that it has the same image is obvious because there is a factorisation, so I won't mention it. The fact that you get an induced map is also obvious, because if you don't know which antecedent to choose, it doesn't matter, as they all have the same images; so just choose any antecedent.
Finally, the fact that the induced map is injective is also obvious because you've forced it to be ! If $x,y$ have the same image in the new structure, then any antecedent of them do too, so they have been declared to be equal ! Therefore $x=y$ by the pure will of you, the new structure creator. In other words, the first isomorphism theorem is you wanting a map to be injective, and declaring "it is", and by doing so you simply create a new structure (the quotient structure), on which it is, precisely because you declared it to be.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176023%2fshould-the-isomorphism-theorems-be-seen-as-an-interface-between-algebra-and-ca%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Before addressing your questions I will write here my favorite version of the first isomorphism theorem. As others have commented, you need notions of quotients, images and kernels before even attempting to enunciate such a result. There's more than one way to do this (for example, additive categories). Here we are going to work with concrete categories. Recall the notion of images.
Definition [kernel]: Let $f : X to Y$ be a function. The kernel of $f$ is the set $(a,b) in X times X mid f(a)=f(b)$.
The notion of kernel as defined here is simply the kernel pair of $f$, that is, the pullback of $X xrightarrowf Y xleftarrowf X$.
Definition [concrete quotients and congruences]: Let $(C,U)$ be a concrete category and $X$ an object of $C$. A concrete quotient of $X$ is an epimorphism $pi : X to Y$ such that $U(pi)$ is epi and for every object $Z$ of $C$ and every function $f : U(Y) to U(Z)$, the following are equivalents:
- There exists a morphism $f' : Y to Z$ such that $U(f') = f$.
- There exists a morphism $g : X to Z$ such that $U(g) = f circ U(pi)$.
The set $ker(U(pi))$ is called a congruence on $X$.
If you prefer, you can define concrete quotients as equivalence classes instead. Note that this notion of quotient coincides with topological quotients, for instance, while the usual notion of quotients (that is, epimorphisms) does not. In essence, concrete quotients allow you to complete diagrams in the base category by looking at the underlying diagrams in $Set$. A congruence on an object $X$ is essentially an equivalence relation on $U(X)$ with an associated concrete quotient of $X$. Observe, however, that congruences need not to arise only from $U(pi)$ for $pi$ a concrete quotient.
Theorem [the First Isomorphism Theorem]: Let $(C,U)$ be a concrete category, where $C$ is complete and $U$ is continuous. Let $q : X to Z$ be a morphism in $C$ such that $ker(U(q))$ is a congruence on $X$. Then the morphism $m : X/ker(U(q)) to Z$ (such that $q = m circ pi_q$) is the image of $q$.
Proof : First of all we must verify that $m$ is a monomorphism. Let $x,y in U(X)$ and $[x],[y]$ their equivalence classes regarding $ker(U(q))$. If $U(m)([x])=U(m)([y])$, then $(U(pi_q) circ U(m))(x)=(U(pi_q) circ U(m))(y)$, hence $U(pi_q circ m)(x)=U(pi_q circ m)(y)$, which implies $U(q)(x)=U(q)(y)$. Therefore $(x,y) in ker(U(q))$ and $[x]=[y]$. $U(m)$ is mono, hence $m$ is as well ($U$ is faithful).
Now let $m' : Y to Z$ be a monomorphism and $h : X to Y$ be a morphism such that $q= m' circ h$. we wish to prove the existence of $f : X/ker((U(q))) to Y$ such that $m = m' circ f$. If $(x,y) in ker(U(q))$, then $U(q)(x)=U(q)(y)$, hence $U(h)(x)=U(h)(y)$ (since $U$ is continuous and $m'$ is mono, $U(m')$ is mono). By the definition of concrete quotients, there exists a morphism $f : X/ker((U(q))) to Y$ such that $h = f circ pi_q$. Since $m' circ h = q = m circ pi_q$, we have $m' circ f circ pi_q = m circ pi_q$. Since $pi_q$ is epi, we have $m' circ f = m$.
Note that, in particular, this isomorphism theorem is valid on the category of topological spaces (with the obvious forgetful functor to $Set$)! What is the problem here? I'll leave that as an exercise.
Now, addressing the questions:
So is it correct that I shouldn't be trying to prove the isomorphism theorems in category theory?
That is not correct. However, you should be aware of the fact that general categories might not always have the structure/properties you need to talk about certain concepts. In that case, however, you should still be able to consider a particular class of categories in which you can prove your desired results.
Is it correct that instead, the isomorphism theorems are kind of like "interfaces", which justify talking about algebraic structures (among other structuers) in terms of structure preserving morphisms?
I'm not sure if I understand this question. The fact that homomorphisms between algebraic structures satisfy the isomorphism theorems is certainly a good reason to talk about structure preserving functions (instead of non-structure preserving functions) in certain scenarios. However, in other structures, where the theorem might not be valid (topological spaces for example), it is still "better" to consider structure preserving functions than simply general functions.
$endgroup$
1
$begingroup$
I wish I had known this version of the isomorphism theorem before writing my answer, +1
$endgroup$
– Max
Apr 5 at 17:47
1
$begingroup$
For the LaTeX, writingf:Xto Y
($f:Xto Y$) as opposed tofcolon Xto Y
($fcolon Xto Y$) seems easier and renders better... (at least for me).
$endgroup$
– Derek Elkins
Apr 6 at 1:27
add a comment |
$begingroup$
Before addressing your questions I will write here my favorite version of the first isomorphism theorem. As others have commented, you need notions of quotients, images and kernels before even attempting to enunciate such a result. There's more than one way to do this (for example, additive categories). Here we are going to work with concrete categories. Recall the notion of images.
Definition [kernel]: Let $f : X to Y$ be a function. The kernel of $f$ is the set $(a,b) in X times X mid f(a)=f(b)$.
The notion of kernel as defined here is simply the kernel pair of $f$, that is, the pullback of $X xrightarrowf Y xleftarrowf X$.
Definition [concrete quotients and congruences]: Let $(C,U)$ be a concrete category and $X$ an object of $C$. A concrete quotient of $X$ is an epimorphism $pi : X to Y$ such that $U(pi)$ is epi and for every object $Z$ of $C$ and every function $f : U(Y) to U(Z)$, the following are equivalents:
- There exists a morphism $f' : Y to Z$ such that $U(f') = f$.
- There exists a morphism $g : X to Z$ such that $U(g) = f circ U(pi)$.
The set $ker(U(pi))$ is called a congruence on $X$.
If you prefer, you can define concrete quotients as equivalence classes instead. Note that this notion of quotient coincides with topological quotients, for instance, while the usual notion of quotients (that is, epimorphisms) does not. In essence, concrete quotients allow you to complete diagrams in the base category by looking at the underlying diagrams in $Set$. A congruence on an object $X$ is essentially an equivalence relation on $U(X)$ with an associated concrete quotient of $X$. Observe, however, that congruences need not to arise only from $U(pi)$ for $pi$ a concrete quotient.
Theorem [the First Isomorphism Theorem]: Let $(C,U)$ be a concrete category, where $C$ is complete and $U$ is continuous. Let $q : X to Z$ be a morphism in $C$ such that $ker(U(q))$ is a congruence on $X$. Then the morphism $m : X/ker(U(q)) to Z$ (such that $q = m circ pi_q$) is the image of $q$.
Proof : First of all we must verify that $m$ is a monomorphism. Let $x,y in U(X)$ and $[x],[y]$ their equivalence classes regarding $ker(U(q))$. If $U(m)([x])=U(m)([y])$, then $(U(pi_q) circ U(m))(x)=(U(pi_q) circ U(m))(y)$, hence $U(pi_q circ m)(x)=U(pi_q circ m)(y)$, which implies $U(q)(x)=U(q)(y)$. Therefore $(x,y) in ker(U(q))$ and $[x]=[y]$. $U(m)$ is mono, hence $m$ is as well ($U$ is faithful).
Now let $m' : Y to Z$ be a monomorphism and $h : X to Y$ be a morphism such that $q= m' circ h$. we wish to prove the existence of $f : X/ker((U(q))) to Y$ such that $m = m' circ f$. If $(x,y) in ker(U(q))$, then $U(q)(x)=U(q)(y)$, hence $U(h)(x)=U(h)(y)$ (since $U$ is continuous and $m'$ is mono, $U(m')$ is mono). By the definition of concrete quotients, there exists a morphism $f : X/ker((U(q))) to Y$ such that $h = f circ pi_q$. Since $m' circ h = q = m circ pi_q$, we have $m' circ f circ pi_q = m circ pi_q$. Since $pi_q$ is epi, we have $m' circ f = m$.
Note that, in particular, this isomorphism theorem is valid on the category of topological spaces (with the obvious forgetful functor to $Set$)! What is the problem here? I'll leave that as an exercise.
Now, addressing the questions:
So is it correct that I shouldn't be trying to prove the isomorphism theorems in category theory?
That is not correct. However, you should be aware of the fact that general categories might not always have the structure/properties you need to talk about certain concepts. In that case, however, you should still be able to consider a particular class of categories in which you can prove your desired results.
Is it correct that instead, the isomorphism theorems are kind of like "interfaces", which justify talking about algebraic structures (among other structuers) in terms of structure preserving morphisms?
I'm not sure if I understand this question. The fact that homomorphisms between algebraic structures satisfy the isomorphism theorems is certainly a good reason to talk about structure preserving functions (instead of non-structure preserving functions) in certain scenarios. However, in other structures, where the theorem might not be valid (topological spaces for example), it is still "better" to consider structure preserving functions than simply general functions.
$endgroup$
1
$begingroup$
I wish I had known this version of the isomorphism theorem before writing my answer, +1
$endgroup$
– Max
Apr 5 at 17:47
1
$begingroup$
For the LaTeX, writingf:Xto Y
($f:Xto Y$) as opposed tofcolon Xto Y
($fcolon Xto Y$) seems easier and renders better... (at least for me).
$endgroup$
– Derek Elkins
Apr 6 at 1:27
add a comment |
$begingroup$
Before addressing your questions I will write here my favorite version of the first isomorphism theorem. As others have commented, you need notions of quotients, images and kernels before even attempting to enunciate such a result. There's more than one way to do this (for example, additive categories). Here we are going to work with concrete categories. Recall the notion of images.
Definition [kernel]: Let $f : X to Y$ be a function. The kernel of $f$ is the set $(a,b) in X times X mid f(a)=f(b)$.
The notion of kernel as defined here is simply the kernel pair of $f$, that is, the pullback of $X xrightarrowf Y xleftarrowf X$.
Definition [concrete quotients and congruences]: Let $(C,U)$ be a concrete category and $X$ an object of $C$. A concrete quotient of $X$ is an epimorphism $pi : X to Y$ such that $U(pi)$ is epi and for every object $Z$ of $C$ and every function $f : U(Y) to U(Z)$, the following are equivalents:
- There exists a morphism $f' : Y to Z$ such that $U(f') = f$.
- There exists a morphism $g : X to Z$ such that $U(g) = f circ U(pi)$.
The set $ker(U(pi))$ is called a congruence on $X$.
If you prefer, you can define concrete quotients as equivalence classes instead. Note that this notion of quotient coincides with topological quotients, for instance, while the usual notion of quotients (that is, epimorphisms) does not. In essence, concrete quotients allow you to complete diagrams in the base category by looking at the underlying diagrams in $Set$. A congruence on an object $X$ is essentially an equivalence relation on $U(X)$ with an associated concrete quotient of $X$. Observe, however, that congruences need not to arise only from $U(pi)$ for $pi$ a concrete quotient.
Theorem [the First Isomorphism Theorem]: Let $(C,U)$ be a concrete category, where $C$ is complete and $U$ is continuous. Let $q : X to Z$ be a morphism in $C$ such that $ker(U(q))$ is a congruence on $X$. Then the morphism $m : X/ker(U(q)) to Z$ (such that $q = m circ pi_q$) is the image of $q$.
Proof : First of all we must verify that $m$ is a monomorphism. Let $x,y in U(X)$ and $[x],[y]$ their equivalence classes regarding $ker(U(q))$. If $U(m)([x])=U(m)([y])$, then $(U(pi_q) circ U(m))(x)=(U(pi_q) circ U(m))(y)$, hence $U(pi_q circ m)(x)=U(pi_q circ m)(y)$, which implies $U(q)(x)=U(q)(y)$. Therefore $(x,y) in ker(U(q))$ and $[x]=[y]$. $U(m)$ is mono, hence $m$ is as well ($U$ is faithful).
Now let $m' : Y to Z$ be a monomorphism and $h : X to Y$ be a morphism such that $q= m' circ h$. we wish to prove the existence of $f : X/ker((U(q))) to Y$ such that $m = m' circ f$. If $(x,y) in ker(U(q))$, then $U(q)(x)=U(q)(y)$, hence $U(h)(x)=U(h)(y)$ (since $U$ is continuous and $m'$ is mono, $U(m')$ is mono). By the definition of concrete quotients, there exists a morphism $f : X/ker((U(q))) to Y$ such that $h = f circ pi_q$. Since $m' circ h = q = m circ pi_q$, we have $m' circ f circ pi_q = m circ pi_q$. Since $pi_q$ is epi, we have $m' circ f = m$.
Note that, in particular, this isomorphism theorem is valid on the category of topological spaces (with the obvious forgetful functor to $Set$)! What is the problem here? I'll leave that as an exercise.
Now, addressing the questions:
So is it correct that I shouldn't be trying to prove the isomorphism theorems in category theory?
That is not correct. However, you should be aware of the fact that general categories might not always have the structure/properties you need to talk about certain concepts. In that case, however, you should still be able to consider a particular class of categories in which you can prove your desired results.
Is it correct that instead, the isomorphism theorems are kind of like "interfaces", which justify talking about algebraic structures (among other structuers) in terms of structure preserving morphisms?
I'm not sure if I understand this question. The fact that homomorphisms between algebraic structures satisfy the isomorphism theorems is certainly a good reason to talk about structure preserving functions (instead of non-structure preserving functions) in certain scenarios. However, in other structures, where the theorem might not be valid (topological spaces for example), it is still "better" to consider structure preserving functions than simply general functions.
$endgroup$
Before addressing your questions I will write here my favorite version of the first isomorphism theorem. As others have commented, you need notions of quotients, images and kernels before even attempting to enunciate such a result. There's more than one way to do this (for example, additive categories). Here we are going to work with concrete categories. Recall the notion of images.
Definition [kernel]: Let $f : X to Y$ be a function. The kernel of $f$ is the set $(a,b) in X times X mid f(a)=f(b)$.
The notion of kernel as defined here is simply the kernel pair of $f$, that is, the pullback of $X xrightarrowf Y xleftarrowf X$.
Definition [concrete quotients and congruences]: Let $(C,U)$ be a concrete category and $X$ an object of $C$. A concrete quotient of $X$ is an epimorphism $pi : X to Y$ such that $U(pi)$ is epi and for every object $Z$ of $C$ and every function $f : U(Y) to U(Z)$, the following are equivalents:
- There exists a morphism $f' : Y to Z$ such that $U(f') = f$.
- There exists a morphism $g : X to Z$ such that $U(g) = f circ U(pi)$.
The set $ker(U(pi))$ is called a congruence on $X$.
If you prefer, you can define concrete quotients as equivalence classes instead. Note that this notion of quotient coincides with topological quotients, for instance, while the usual notion of quotients (that is, epimorphisms) does not. In essence, concrete quotients allow you to complete diagrams in the base category by looking at the underlying diagrams in $Set$. A congruence on an object $X$ is essentially an equivalence relation on $U(X)$ with an associated concrete quotient of $X$. Observe, however, that congruences need not to arise only from $U(pi)$ for $pi$ a concrete quotient.
Theorem [the First Isomorphism Theorem]: Let $(C,U)$ be a concrete category, where $C$ is complete and $U$ is continuous. Let $q : X to Z$ be a morphism in $C$ such that $ker(U(q))$ is a congruence on $X$. Then the morphism $m : X/ker(U(q)) to Z$ (such that $q = m circ pi_q$) is the image of $q$.
Proof : First of all we must verify that $m$ is a monomorphism. Let $x,y in U(X)$ and $[x],[y]$ their equivalence classes regarding $ker(U(q))$. If $U(m)([x])=U(m)([y])$, then $(U(pi_q) circ U(m))(x)=(U(pi_q) circ U(m))(y)$, hence $U(pi_q circ m)(x)=U(pi_q circ m)(y)$, which implies $U(q)(x)=U(q)(y)$. Therefore $(x,y) in ker(U(q))$ and $[x]=[y]$. $U(m)$ is mono, hence $m$ is as well ($U$ is faithful).
Now let $m' : Y to Z$ be a monomorphism and $h : X to Y$ be a morphism such that $q= m' circ h$. we wish to prove the existence of $f : X/ker((U(q))) to Y$ such that $m = m' circ f$. If $(x,y) in ker(U(q))$, then $U(q)(x)=U(q)(y)$, hence $U(h)(x)=U(h)(y)$ (since $U$ is continuous and $m'$ is mono, $U(m')$ is mono). By the definition of concrete quotients, there exists a morphism $f : X/ker((U(q))) to Y$ such that $h = f circ pi_q$. Since $m' circ h = q = m circ pi_q$, we have $m' circ f circ pi_q = m circ pi_q$. Since $pi_q$ is epi, we have $m' circ f = m$.
Note that, in particular, this isomorphism theorem is valid on the category of topological spaces (with the obvious forgetful functor to $Set$)! What is the problem here? I'll leave that as an exercise.
Now, addressing the questions:
So is it correct that I shouldn't be trying to prove the isomorphism theorems in category theory?
That is not correct. However, you should be aware of the fact that general categories might not always have the structure/properties you need to talk about certain concepts. In that case, however, you should still be able to consider a particular class of categories in which you can prove your desired results.
Is it correct that instead, the isomorphism theorems are kind of like "interfaces", which justify talking about algebraic structures (among other structuers) in terms of structure preserving morphisms?
I'm not sure if I understand this question. The fact that homomorphisms between algebraic structures satisfy the isomorphism theorems is certainly a good reason to talk about structure preserving functions (instead of non-structure preserving functions) in certain scenarios. However, in other structures, where the theorem might not be valid (topological spaces for example), it is still "better" to consider structure preserving functions than simply general functions.
edited 2 days ago
answered Apr 5 at 16:39
Hilario FernandesHilario Fernandes
430410
430410
1
$begingroup$
I wish I had known this version of the isomorphism theorem before writing my answer, +1
$endgroup$
– Max
Apr 5 at 17:47
1
$begingroup$
For the LaTeX, writingf:Xto Y
($f:Xto Y$) as opposed tofcolon Xto Y
($fcolon Xto Y$) seems easier and renders better... (at least for me).
$endgroup$
– Derek Elkins
Apr 6 at 1:27
add a comment |
1
$begingroup$
I wish I had known this version of the isomorphism theorem before writing my answer, +1
$endgroup$
– Max
Apr 5 at 17:47
1
$begingroup$
For the LaTeX, writingf:Xto Y
($f:Xto Y$) as opposed tofcolon Xto Y
($fcolon Xto Y$) seems easier and renders better... (at least for me).
$endgroup$
– Derek Elkins
Apr 6 at 1:27
1
1
$begingroup$
I wish I had known this version of the isomorphism theorem before writing my answer, +1
$endgroup$
– Max
Apr 5 at 17:47
$begingroup$
I wish I had known this version of the isomorphism theorem before writing my answer, +1
$endgroup$
– Max
Apr 5 at 17:47
1
1
$begingroup$
For the LaTeX, writing
f:Xto Y
($f:Xto Y$) as opposed to fcolon Xto Y
($fcolon Xto Y$) seems easier and renders better... (at least for me).$endgroup$
– Derek Elkins
Apr 6 at 1:27
$begingroup$
For the LaTeX, writing
f:Xto Y
($f:Xto Y$) as opposed to fcolon Xto Y
($fcolon Xto Y$) seems easier and renders better... (at least for me).$endgroup$
– Derek Elkins
Apr 6 at 1:27
add a comment |
$begingroup$
This isn't a full answer as I don't understand half of the question, and have asked for precision on the other half, but it's too long to be a comment
No, it's not implicitly using the isomorphism theorem, it's using the fact that (in algebraic structures) the corestriction of an injective morphism to its image is an isomorphism, which is way more basic than the first isomorphism theorem.
Then, for your questions :
$bullet$ No you shouldn't try to prove the isomorphism theorem in general categories because it simply isn't true in general. First of all, you would have to have a notion of image and of kernel, which don't usually make sense in an arbitrary category, and even when they do exist, it's not true that the theorem holds. For me to make a precise statement and give counterexamples here you have to tell me what you mean by "image" in a general category, for instance are you referring to this definition ?
$bullet$ I don't understand this question. Let me just say how I feel about the isomorphism theorem (the first one, the others are just immediate corollaries) for groups, and algebraic structures more generally, in the hope that it will shed some light on them; and perhaps you can edit your post to clarify your question.
The first isomorphism theorem is basically a tautology : it tells you that if you have a surjective morphism and declare "$x=y$" precisely when $f(x)=f(y)$ then you get an induced map on the new structure when your declaration is true, and that this induced map is injective, and has the same image as the original one. The fact that it has the same image is obvious because there is a factorisation, so I won't mention it. The fact that you get an induced map is also obvious, because if you don't know which antecedent to choose, it doesn't matter, as they all have the same images; so just choose any antecedent.
Finally, the fact that the induced map is injective is also obvious because you've forced it to be ! If $x,y$ have the same image in the new structure, then any antecedent of them do too, so they have been declared to be equal ! Therefore $x=y$ by the pure will of you, the new structure creator. In other words, the first isomorphism theorem is you wanting a map to be injective, and declaring "it is", and by doing so you simply create a new structure (the quotient structure), on which it is, precisely because you declared it to be.
$endgroup$
add a comment |
$begingroup$
This isn't a full answer as I don't understand half of the question, and have asked for precision on the other half, but it's too long to be a comment
No, it's not implicitly using the isomorphism theorem, it's using the fact that (in algebraic structures) the corestriction of an injective morphism to its image is an isomorphism, which is way more basic than the first isomorphism theorem.
Then, for your questions :
$bullet$ No you shouldn't try to prove the isomorphism theorem in general categories because it simply isn't true in general. First of all, you would have to have a notion of image and of kernel, which don't usually make sense in an arbitrary category, and even when they do exist, it's not true that the theorem holds. For me to make a precise statement and give counterexamples here you have to tell me what you mean by "image" in a general category, for instance are you referring to this definition ?
$bullet$ I don't understand this question. Let me just say how I feel about the isomorphism theorem (the first one, the others are just immediate corollaries) for groups, and algebraic structures more generally, in the hope that it will shed some light on them; and perhaps you can edit your post to clarify your question.
The first isomorphism theorem is basically a tautology : it tells you that if you have a surjective morphism and declare "$x=y$" precisely when $f(x)=f(y)$ then you get an induced map on the new structure when your declaration is true, and that this induced map is injective, and has the same image as the original one. The fact that it has the same image is obvious because there is a factorisation, so I won't mention it. The fact that you get an induced map is also obvious, because if you don't know which antecedent to choose, it doesn't matter, as they all have the same images; so just choose any antecedent.
Finally, the fact that the induced map is injective is also obvious because you've forced it to be ! If $x,y$ have the same image in the new structure, then any antecedent of them do too, so they have been declared to be equal ! Therefore $x=y$ by the pure will of you, the new structure creator. In other words, the first isomorphism theorem is you wanting a map to be injective, and declaring "it is", and by doing so you simply create a new structure (the quotient structure), on which it is, precisely because you declared it to be.
$endgroup$
add a comment |
$begingroup$
This isn't a full answer as I don't understand half of the question, and have asked for precision on the other half, but it's too long to be a comment
No, it's not implicitly using the isomorphism theorem, it's using the fact that (in algebraic structures) the corestriction of an injective morphism to its image is an isomorphism, which is way more basic than the first isomorphism theorem.
Then, for your questions :
$bullet$ No you shouldn't try to prove the isomorphism theorem in general categories because it simply isn't true in general. First of all, you would have to have a notion of image and of kernel, which don't usually make sense in an arbitrary category, and even when they do exist, it's not true that the theorem holds. For me to make a precise statement and give counterexamples here you have to tell me what you mean by "image" in a general category, for instance are you referring to this definition ?
$bullet$ I don't understand this question. Let me just say how I feel about the isomorphism theorem (the first one, the others are just immediate corollaries) for groups, and algebraic structures more generally, in the hope that it will shed some light on them; and perhaps you can edit your post to clarify your question.
The first isomorphism theorem is basically a tautology : it tells you that if you have a surjective morphism and declare "$x=y$" precisely when $f(x)=f(y)$ then you get an induced map on the new structure when your declaration is true, and that this induced map is injective, and has the same image as the original one. The fact that it has the same image is obvious because there is a factorisation, so I won't mention it. The fact that you get an induced map is also obvious, because if you don't know which antecedent to choose, it doesn't matter, as they all have the same images; so just choose any antecedent.
Finally, the fact that the induced map is injective is also obvious because you've forced it to be ! If $x,y$ have the same image in the new structure, then any antecedent of them do too, so they have been declared to be equal ! Therefore $x=y$ by the pure will of you, the new structure creator. In other words, the first isomorphism theorem is you wanting a map to be injective, and declaring "it is", and by doing so you simply create a new structure (the quotient structure), on which it is, precisely because you declared it to be.
$endgroup$
This isn't a full answer as I don't understand half of the question, and have asked for precision on the other half, but it's too long to be a comment
No, it's not implicitly using the isomorphism theorem, it's using the fact that (in algebraic structures) the corestriction of an injective morphism to its image is an isomorphism, which is way more basic than the first isomorphism theorem.
Then, for your questions :
$bullet$ No you shouldn't try to prove the isomorphism theorem in general categories because it simply isn't true in general. First of all, you would have to have a notion of image and of kernel, which don't usually make sense in an arbitrary category, and even when they do exist, it's not true that the theorem holds. For me to make a precise statement and give counterexamples here you have to tell me what you mean by "image" in a general category, for instance are you referring to this definition ?
$bullet$ I don't understand this question. Let me just say how I feel about the isomorphism theorem (the first one, the others are just immediate corollaries) for groups, and algebraic structures more generally, in the hope that it will shed some light on them; and perhaps you can edit your post to clarify your question.
The first isomorphism theorem is basically a tautology : it tells you that if you have a surjective morphism and declare "$x=y$" precisely when $f(x)=f(y)$ then you get an induced map on the new structure when your declaration is true, and that this induced map is injective, and has the same image as the original one. The fact that it has the same image is obvious because there is a factorisation, so I won't mention it. The fact that you get an induced map is also obvious, because if you don't know which antecedent to choose, it doesn't matter, as they all have the same images; so just choose any antecedent.
Finally, the fact that the induced map is injective is also obvious because you've forced it to be ! If $x,y$ have the same image in the new structure, then any antecedent of them do too, so they have been declared to be equal ! Therefore $x=y$ by the pure will of you, the new structure creator. In other words, the first isomorphism theorem is you wanting a map to be injective, and declaring "it is", and by doing so you simply create a new structure (the quotient structure), on which it is, precisely because you declared it to be.
answered Apr 5 at 15:29
MaxMax
16.1k11144
16.1k11144
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176023%2fshould-the-isomorphism-theorems-be-seen-as-an-interface-between-algebra-and-ca%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown