Could an aircraft fly or hover using only jets of compressed air?Using physics - How can a character flyUsing birds to lift a cabin to the airTechnology using only biomaterialsCould you fly airplanes on Jupiter?How will cities be transformed after hover cars become common?What ways are there to keep a steady altitude with large fluctuations regarding load?Could a creature fly like a helicopter?Sea/Air fighters using current/near future tech?Compressed air lighting?Could powered exoskeletons enable humans to fly?

"My colleague's body is amazing"

Why doesn't a const reference extend the life of a temporary object passed via a function?

Is there a way to make member function NOT callable from constructor?

Is there any use for defining additional entity types in a SOQL FROM clause?

Symmetry in quantum mechanics

COUNT(*) or MAX(id) - which is faster?

aging parents with no investments

Doomsday-clock for my fantasy planet

What to wear for invited talk in Canada

Typesetting a double Over Dot on top of a symbol

I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine

Finding files for which a command fails

What is the meaning of "of trouble" in the following sentence?

Is this food a bread or a loaf?

What is it called when one voice type sings a 'solo'?

Where else does the Shulchan Aruch quote an authority by name?

Could Giant Ground Sloths have been a good pack animal for the ancient Mayans?

How to answer pointed "are you quitting" questioning when I don't want them to suspect

Why do we use polarized capacitors?

Is there a familial term for apples and pears?

Are white and non-white police officers equally likely to kill black suspects?

Need help identifying/translating a plaque in Tangier, Morocco

Is there a name of the flying bionic bird?

Why airport relocation isn't done gradually?



Could an aircraft fly or hover using only jets of compressed air?


Using physics - How can a character flyUsing birds to lift a cabin to the airTechnology using only biomaterialsCould you fly airplanes on Jupiter?How will cities be transformed after hover cars become common?What ways are there to keep a steady altitude with large fluctuations regarding load?Could a creature fly like a helicopter?Sea/Air fighters using current/near future tech?Compressed air lighting?Could powered exoskeletons enable humans to fly?













3












$begingroup$


In a world with practically unlimited energy and advanced technology they have no need to burn fuels for energy or even use fire. To travel around their huge planet cities they use aircraft and hover cars that use dense compressed air to hover and propel themselves. They use a practically indestructible material to hold xenon or other heavy gases at very high pressures.



I know that they would likely be noisy but I am unsure of the scale of how much air a car would need to carry to fly for days before refueling. Would the weight of all the air make it too heavy to even take off or move at a reasonable speed?










share|improve this question









$endgroup$







  • 2




    $begingroup$
    A hovercraft floats kinda lime that.
    $endgroup$
    – Renan
    Apr 5 at 15:40






  • 2




    $begingroup$
    Yes it would, it's the tyranny of the rocket equation, squared.
    $endgroup$
    – Harper
    Apr 5 at 15:46






  • 15




    $begingroup$
    Why carry compressed air, instead of just using the air in the atmosphere?
    $endgroup$
    – Tyler S. Loeper
    Apr 5 at 15:46






  • 2




    $begingroup$
    Hard to see a good reason why a technology that has practically unlimited energy would not use e.g. electric cars or trains. They're also a lot quieter compared to compressed air discharges going on all over the place.
    $endgroup$
    – StephenG
    Apr 5 at 16:29






  • 2




    $begingroup$
    Depends on how much the machines that make practically unlimited energy weigh, or advances in energy storage that being weight down. If you're not going to bring all that with you to make compressed air along the way, you're left with nitrogen fueled jet packs which last about a minute.
    $endgroup$
    – Mazura
    Apr 5 at 19:12















3












$begingroup$


In a world with practically unlimited energy and advanced technology they have no need to burn fuels for energy or even use fire. To travel around their huge planet cities they use aircraft and hover cars that use dense compressed air to hover and propel themselves. They use a practically indestructible material to hold xenon or other heavy gases at very high pressures.



I know that they would likely be noisy but I am unsure of the scale of how much air a car would need to carry to fly for days before refueling. Would the weight of all the air make it too heavy to even take off or move at a reasonable speed?










share|improve this question









$endgroup$







  • 2




    $begingroup$
    A hovercraft floats kinda lime that.
    $endgroup$
    – Renan
    Apr 5 at 15:40






  • 2




    $begingroup$
    Yes it would, it's the tyranny of the rocket equation, squared.
    $endgroup$
    – Harper
    Apr 5 at 15:46






  • 15




    $begingroup$
    Why carry compressed air, instead of just using the air in the atmosphere?
    $endgroup$
    – Tyler S. Loeper
    Apr 5 at 15:46






  • 2




    $begingroup$
    Hard to see a good reason why a technology that has practically unlimited energy would not use e.g. electric cars or trains. They're also a lot quieter compared to compressed air discharges going on all over the place.
    $endgroup$
    – StephenG
    Apr 5 at 16:29






  • 2




    $begingroup$
    Depends on how much the machines that make practically unlimited energy weigh, or advances in energy storage that being weight down. If you're not going to bring all that with you to make compressed air along the way, you're left with nitrogen fueled jet packs which last about a minute.
    $endgroup$
    – Mazura
    Apr 5 at 19:12













3












3








3





$begingroup$


In a world with practically unlimited energy and advanced technology they have no need to burn fuels for energy or even use fire. To travel around their huge planet cities they use aircraft and hover cars that use dense compressed air to hover and propel themselves. They use a practically indestructible material to hold xenon or other heavy gases at very high pressures.



I know that they would likely be noisy but I am unsure of the scale of how much air a car would need to carry to fly for days before refueling. Would the weight of all the air make it too heavy to even take off or move at a reasonable speed?










share|improve this question









$endgroup$




In a world with practically unlimited energy and advanced technology they have no need to burn fuels for energy or even use fire. To travel around their huge planet cities they use aircraft and hover cars that use dense compressed air to hover and propel themselves. They use a practically indestructible material to hold xenon or other heavy gases at very high pressures.



I know that they would likely be noisy but I am unsure of the scale of how much air a car would need to carry to fly for days before refueling. Would the weight of all the air make it too heavy to even take off or move at a reasonable speed?







technology flight transportation rockets






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Apr 5 at 15:36









GiruŠatukuGiruŠatuku

456




456







  • 2




    $begingroup$
    A hovercraft floats kinda lime that.
    $endgroup$
    – Renan
    Apr 5 at 15:40






  • 2




    $begingroup$
    Yes it would, it's the tyranny of the rocket equation, squared.
    $endgroup$
    – Harper
    Apr 5 at 15:46






  • 15




    $begingroup$
    Why carry compressed air, instead of just using the air in the atmosphere?
    $endgroup$
    – Tyler S. Loeper
    Apr 5 at 15:46






  • 2




    $begingroup$
    Hard to see a good reason why a technology that has practically unlimited energy would not use e.g. electric cars or trains. They're also a lot quieter compared to compressed air discharges going on all over the place.
    $endgroup$
    – StephenG
    Apr 5 at 16:29






  • 2




    $begingroup$
    Depends on how much the machines that make practically unlimited energy weigh, or advances in energy storage that being weight down. If you're not going to bring all that with you to make compressed air along the way, you're left with nitrogen fueled jet packs which last about a minute.
    $endgroup$
    – Mazura
    Apr 5 at 19:12












  • 2




    $begingroup$
    A hovercraft floats kinda lime that.
    $endgroup$
    – Renan
    Apr 5 at 15:40






  • 2




    $begingroup$
    Yes it would, it's the tyranny of the rocket equation, squared.
    $endgroup$
    – Harper
    Apr 5 at 15:46






  • 15




    $begingroup$
    Why carry compressed air, instead of just using the air in the atmosphere?
    $endgroup$
    – Tyler S. Loeper
    Apr 5 at 15:46






  • 2




    $begingroup$
    Hard to see a good reason why a technology that has practically unlimited energy would not use e.g. electric cars or trains. They're also a lot quieter compared to compressed air discharges going on all over the place.
    $endgroup$
    – StephenG
    Apr 5 at 16:29






  • 2




    $begingroup$
    Depends on how much the machines that make practically unlimited energy weigh, or advances in energy storage that being weight down. If you're not going to bring all that with you to make compressed air along the way, you're left with nitrogen fueled jet packs which last about a minute.
    $endgroup$
    – Mazura
    Apr 5 at 19:12







2




2




$begingroup$
A hovercraft floats kinda lime that.
$endgroup$
– Renan
Apr 5 at 15:40




$begingroup$
A hovercraft floats kinda lime that.
$endgroup$
– Renan
Apr 5 at 15:40




2




2




$begingroup$
Yes it would, it's the tyranny of the rocket equation, squared.
$endgroup$
– Harper
Apr 5 at 15:46




$begingroup$
Yes it would, it's the tyranny of the rocket equation, squared.
$endgroup$
– Harper
Apr 5 at 15:46




15




15




$begingroup$
Why carry compressed air, instead of just using the air in the atmosphere?
$endgroup$
– Tyler S. Loeper
Apr 5 at 15:46




$begingroup$
Why carry compressed air, instead of just using the air in the atmosphere?
$endgroup$
– Tyler S. Loeper
Apr 5 at 15:46




2




2




$begingroup$
Hard to see a good reason why a technology that has practically unlimited energy would not use e.g. electric cars or trains. They're also a lot quieter compared to compressed air discharges going on all over the place.
$endgroup$
– StephenG
Apr 5 at 16:29




$begingroup$
Hard to see a good reason why a technology that has practically unlimited energy would not use e.g. electric cars or trains. They're also a lot quieter compared to compressed air discharges going on all over the place.
$endgroup$
– StephenG
Apr 5 at 16:29




2




2




$begingroup$
Depends on how much the machines that make practically unlimited energy weigh, or advances in energy storage that being weight down. If you're not going to bring all that with you to make compressed air along the way, you're left with nitrogen fueled jet packs which last about a minute.
$endgroup$
– Mazura
Apr 5 at 19:12




$begingroup$
Depends on how much the machines that make practically unlimited energy weigh, or advances in energy storage that being weight down. If you're not going to bring all that with you to make compressed air along the way, you're left with nitrogen fueled jet packs which last about a minute.
$endgroup$
– Mazura
Apr 5 at 19:12










5 Answers
5






active

oldest

votes


















14












$begingroup$

"Yes", but "No".



For a short ranged hopper - Getting from A to B locally where you park the vehicle in a top up station before going about your day - compressed gas could work. If the trips are short enough. If they're flying, they'll be VERY short trips. [Poking around on Google can come up with light cars/bikes running on compressed air with a range of a few miles.]



However there is a limit to how far you could push such a technology, and you quickly run into several problems.



Eventually you hit a limit on compressed Gas, and will have to reach to liquid storage to fit any more into a tank. Thanks to the ideal gas law, and common phase-change physics, this then jumps the energy required to actually use it - As you try to use the physical energy stored in the compressed gas, you need more thermal energy exchange to let the gas keep expanding.



As you attempt to expand your range, you are hit with the problem of fuel-tyranny: To carry fuel/energy, you need to burn/use fuel/energy to get it to the place where you will use it to move farther.



Say you have something that uses X fuel to move Y distance. At first glance it is easy to assume that 2X fuel will give you 2Y distance, but you need to use fuel to carry the extra fuel... So you add more than 2X, but might need to add more power/thrust to actually move that much fuel, which in turn means you need more fuel to provide it, and... Well you can see how that quickly starts to run away. [If you don't see that, go play Kerbal Space Program, and 'add more boosters']



Beyond that there is also safety issues with compressed gas. "Heavy" gasses can displace normal atmosphere, and come with smothering risks. Even just regular gases come with the risks of critical failures that can make them more risky than traditional fuels past a specific energy density.
Compare the risks of a 'small leak' in a tank of jet fuel - It slowly leaks out over time. Even if it is on fire, that energy is dispersed steadily over time. If you rupture a compressed gas tank, then the nature is that it will want to expend nearly all of its energy in a very short time. [And gets extra interesting if the compressed gas is reactive, as it will want to violently force itself out of storage from even a relatively small failure.]






share|improve this answer









$endgroup$








  • 5




    $begingroup$
    In the "fuel to carry fuel" department, long-range jets are about 50% fuel by weight, and get 12-15 hours of flying time out of it. Compressed gas is considerably less energy-dense than jet fuel.
    $endgroup$
    – Mark
    Apr 5 at 20:22


















10












$begingroup$

In short, no, this would not be a practical vehicle. Certainly it wouldn't provide you with days of endurance.



Your vehicle is basically a less efficient (albeit safer) rocket. Rockets use combustion to increase the pressure and temperature of their exhaust as well as expel it, but after that the principle is the same: stuff leaves your vehicle in one direction, your vehicle gets pushed in the opposite. However, this means that you run into perhaps the biggest problem in rocketry. Your thrust has to carry not just your vehicle's frame and its payload but all of its unused fuel (or unreleased pressurized gas, in this case).



This leads to the Tsiolkovsky rocket equation, one of if not the most famous equations in rocket science, which describes the relationship between a rocket's final velocity (= how long the engines are burning) and its mass fraction, or how much of the rocket is fuel vs. structure and payload. The longer you want to burn, the faster the propellant mass fraction increases until eventually you have no room for a useful payload, or even no room for your rocket.



In your case, although you're not using your engines continuously to produce a single final velocity, you're still burdened by how long you need to continue using them. (This is particularly true in the case of a hovering vehicle where you're constantly fighting against gravity. It would be less true, though still noticeable, in a ground vehicle that only uses fuel when moving.) The longer you want your vehicle to be able to travel without refueling, the greater percentage of it needs to be fuel, without limit.



So how do terrestrial vehicles like cars and airplanes escape this? It's simple: they make use of the atmosphere. Cars pull in oxygen from the air for combustion, making their fuel vastly more weight-efficient. Airplanes exploit the properties of the air to generate aerodynamic lift, reducing their thrust needs.



Given their other technological feats, your people might honestly be best off using combustion engines, then having processing plants recapture carbon dioxide and other combustion products from the air and process them back into fuel. This would require a lot of power, but it would offload the power needs from a small, inefficient mobile platform to a large, efficient stationary one. (In this case the gasoline or whatever is best considered as a type of battery.) Another option would be to carry batteries and have electrically-driven rotors or compressors - basically a very large recreational quadcopter.



As a final aside, having a lot of personal vehicles spewing xenon or other heavy gases everywhere might not be all that safe. Heavier-than-air gas will tend to pool in low places and displace oxygen, which can easily kill people.






share|improve this answer









$endgroup$












  • $begingroup$
    Can someone elaborate on compressors? When they're powerful enough they're basically jet engines facing down.
    $endgroup$
    – Shawn V. Wilson
    Apr 5 at 21:47










  • $begingroup$
    @ShawnV.Wilson I mostly threw that for completeness' sake. I don't really know much about how you'd configure an electrical-powered aircraft at that scale.
    $endgroup$
    – Cadence
    Apr 5 at 22:10


















2












$begingroup$

As others have explained in detail, your limiting factor is how much fuel you can carry since there's a limit to how much you can compress a gas before you start running into problems. An indestructible tank won't help much, as the gas itself will condense into a liquid or start doing other strange things at high-enough pressures. The only way to make this remotely practical is if you can make your vehicle as fuel-efficient as possible.



When traveling by air, you'll spend more fuel fighting gravity than anything else. So don't fight it. An airship or aerostat of some sort could stay in the air without expending any fuel, so you can dedicate your onboard fuel to propulsion. Travel in the direction of the wind could be nearly free, albeit not that fast.



For a vehicle like this to be practical, you'd need to use the air that you're flying through as fuel instead of carrying a limited supply of it with you in tanks. You could have electric engines that suck in air and force it out a narrow nozzle on the rear of the vehicle. You're not moving at extremely high speeds, but at least it works.






share|improve this answer









$endgroup$




















    2












    $begingroup$

    What you need to realize is that energy is $E = fracv^2cdot m2$ while impulse is $p = vcdot m$.



    Each second, earth's gravity transfers an impulse of $p = gcdot m_ocdot 1s$ onto any object of mass $m_o$. If that object is to remain at rest (hovering in the air, or lying on the ground, doesn't really matter as long as it's not moving...), it must constantly get rid of this impulse. The object on the ground does so by transferring the impulse to the ground, an object in the air must transfer the impulse to the air.



    Note that the last paragraph did not mention energy at all. The important figure is the impulse, only.



    Now, look at the two equations for $E$ and $p$. The energy is actually $E = fracv^2cdot m2 = fracvp2 = fracp^22m$. I.e. if you use an infinite mass, you don't need any energy at all (that's the object on the ground, which effectively uses the entire earth to get rid of the impulse). The smaller the amount of mass that you use, the more energy you need.



    If you use your stored air only, you are in the worst possible regime: You are wasting Gigajoules of energy for nothing. If you just double the amount of air you accelerate by driving a simple, single stage turbine with your compressed gas, you have already doubled the lifetime of your fuel! The more outside air you accelerate, the longer your fuel lasts.



    So, no matter how dense your pressured-air-energy-storage is, your vehicles will always suck in air from above and blow it downwards, simply because the fuel will last so much longer. You can basically assume that any hovering air vehicle will always use as much of its upper surface area for sucking in air as possible. Because, using only half the surface area means only half the lifetime of your fuel supply.




    Btw, this is also the reason why helicopters need more fuel while hovering than when they are flying at moderate speed: The hovering helicopter can only interact with the air directly around and above it, which has already been accelerated by its hovering. The flying helicopter is constantly interacting with fresh air at rest, and thus distributing its impulse to more air. More air accelerated $Rightarrow$ air accelerated to lower speeds $Rightarrow$ less energy used.



    Airplanes take this to the extreme: They maximize the amount of air they interact with per second by flying at 800km/h, and thus they minimize the resulting downwards speed of the air they leave behind. The burning fuel in the engine just turns a turbine which uses blades to accelerate as much air as possible backwards, which in turn moves the air foil to accelerate as much air downward as possible to be as efficient as possible. This double indirection is what makes current air planes as efficient as they are, enabling them to fly half-way around the earth without a stop.






    share|improve this answer









    $endgroup$




















      1












      $begingroup$

      I expect someone's going to point out this has massive scaling issues, but hey, you have near infinite energy, so let's swap things: instead of having a bunch of jets running over the surface trying to use compressed air, let's convert the surface into basically a giant air hockey table and make the transports just relatively light with solar sails. The transports have networked computers that connect to the transport system to indicate where they want to go, and then there are a series of "lasers" on the surface a scattered points to provide the horizontal thrust necessary (similar to the proposed solar sails for travel within solar system)



      Dealing with any unintended consequences of the awesomeness of this setup are left as an exercise for the reader.






      share|improve this answer









      $endgroup$








      • 1




        $begingroup$
        If you trained people right, you could omit the lasers and just have them "skate" over the surface on leg strength alone - a novel approach to the moving sidewalk (in that it does not, in fact, move).
        $endgroup$
        – Cadence
        Apr 5 at 22:30











      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "579"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f143340%2fcould-an-aircraft-fly-or-hover-using-only-jets-of-compressed-air%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      5 Answers
      5






      active

      oldest

      votes








      5 Answers
      5






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      14












      $begingroup$

      "Yes", but "No".



      For a short ranged hopper - Getting from A to B locally where you park the vehicle in a top up station before going about your day - compressed gas could work. If the trips are short enough. If they're flying, they'll be VERY short trips. [Poking around on Google can come up with light cars/bikes running on compressed air with a range of a few miles.]



      However there is a limit to how far you could push such a technology, and you quickly run into several problems.



      Eventually you hit a limit on compressed Gas, and will have to reach to liquid storage to fit any more into a tank. Thanks to the ideal gas law, and common phase-change physics, this then jumps the energy required to actually use it - As you try to use the physical energy stored in the compressed gas, you need more thermal energy exchange to let the gas keep expanding.



      As you attempt to expand your range, you are hit with the problem of fuel-tyranny: To carry fuel/energy, you need to burn/use fuel/energy to get it to the place where you will use it to move farther.



      Say you have something that uses X fuel to move Y distance. At first glance it is easy to assume that 2X fuel will give you 2Y distance, but you need to use fuel to carry the extra fuel... So you add more than 2X, but might need to add more power/thrust to actually move that much fuel, which in turn means you need more fuel to provide it, and... Well you can see how that quickly starts to run away. [If you don't see that, go play Kerbal Space Program, and 'add more boosters']



      Beyond that there is also safety issues with compressed gas. "Heavy" gasses can displace normal atmosphere, and come with smothering risks. Even just regular gases come with the risks of critical failures that can make them more risky than traditional fuels past a specific energy density.
      Compare the risks of a 'small leak' in a tank of jet fuel - It slowly leaks out over time. Even if it is on fire, that energy is dispersed steadily over time. If you rupture a compressed gas tank, then the nature is that it will want to expend nearly all of its energy in a very short time. [And gets extra interesting if the compressed gas is reactive, as it will want to violently force itself out of storage from even a relatively small failure.]






      share|improve this answer









      $endgroup$








      • 5




        $begingroup$
        In the "fuel to carry fuel" department, long-range jets are about 50% fuel by weight, and get 12-15 hours of flying time out of it. Compressed gas is considerably less energy-dense than jet fuel.
        $endgroup$
        – Mark
        Apr 5 at 20:22















      14












      $begingroup$

      "Yes", but "No".



      For a short ranged hopper - Getting from A to B locally where you park the vehicle in a top up station before going about your day - compressed gas could work. If the trips are short enough. If they're flying, they'll be VERY short trips. [Poking around on Google can come up with light cars/bikes running on compressed air with a range of a few miles.]



      However there is a limit to how far you could push such a technology, and you quickly run into several problems.



      Eventually you hit a limit on compressed Gas, and will have to reach to liquid storage to fit any more into a tank. Thanks to the ideal gas law, and common phase-change physics, this then jumps the energy required to actually use it - As you try to use the physical energy stored in the compressed gas, you need more thermal energy exchange to let the gas keep expanding.



      As you attempt to expand your range, you are hit with the problem of fuel-tyranny: To carry fuel/energy, you need to burn/use fuel/energy to get it to the place where you will use it to move farther.



      Say you have something that uses X fuel to move Y distance. At first glance it is easy to assume that 2X fuel will give you 2Y distance, but you need to use fuel to carry the extra fuel... So you add more than 2X, but might need to add more power/thrust to actually move that much fuel, which in turn means you need more fuel to provide it, and... Well you can see how that quickly starts to run away. [If you don't see that, go play Kerbal Space Program, and 'add more boosters']



      Beyond that there is also safety issues with compressed gas. "Heavy" gasses can displace normal atmosphere, and come with smothering risks. Even just regular gases come with the risks of critical failures that can make them more risky than traditional fuels past a specific energy density.
      Compare the risks of a 'small leak' in a tank of jet fuel - It slowly leaks out over time. Even if it is on fire, that energy is dispersed steadily over time. If you rupture a compressed gas tank, then the nature is that it will want to expend nearly all of its energy in a very short time. [And gets extra interesting if the compressed gas is reactive, as it will want to violently force itself out of storage from even a relatively small failure.]






      share|improve this answer









      $endgroup$








      • 5




        $begingroup$
        In the "fuel to carry fuel" department, long-range jets are about 50% fuel by weight, and get 12-15 hours of flying time out of it. Compressed gas is considerably less energy-dense than jet fuel.
        $endgroup$
        – Mark
        Apr 5 at 20:22













      14












      14








      14





      $begingroup$

      "Yes", but "No".



      For a short ranged hopper - Getting from A to B locally where you park the vehicle in a top up station before going about your day - compressed gas could work. If the trips are short enough. If they're flying, they'll be VERY short trips. [Poking around on Google can come up with light cars/bikes running on compressed air with a range of a few miles.]



      However there is a limit to how far you could push such a technology, and you quickly run into several problems.



      Eventually you hit a limit on compressed Gas, and will have to reach to liquid storage to fit any more into a tank. Thanks to the ideal gas law, and common phase-change physics, this then jumps the energy required to actually use it - As you try to use the physical energy stored in the compressed gas, you need more thermal energy exchange to let the gas keep expanding.



      As you attempt to expand your range, you are hit with the problem of fuel-tyranny: To carry fuel/energy, you need to burn/use fuel/energy to get it to the place where you will use it to move farther.



      Say you have something that uses X fuel to move Y distance. At first glance it is easy to assume that 2X fuel will give you 2Y distance, but you need to use fuel to carry the extra fuel... So you add more than 2X, but might need to add more power/thrust to actually move that much fuel, which in turn means you need more fuel to provide it, and... Well you can see how that quickly starts to run away. [If you don't see that, go play Kerbal Space Program, and 'add more boosters']



      Beyond that there is also safety issues with compressed gas. "Heavy" gasses can displace normal atmosphere, and come with smothering risks. Even just regular gases come with the risks of critical failures that can make them more risky than traditional fuels past a specific energy density.
      Compare the risks of a 'small leak' in a tank of jet fuel - It slowly leaks out over time. Even if it is on fire, that energy is dispersed steadily over time. If you rupture a compressed gas tank, then the nature is that it will want to expend nearly all of its energy in a very short time. [And gets extra interesting if the compressed gas is reactive, as it will want to violently force itself out of storage from even a relatively small failure.]






      share|improve this answer









      $endgroup$



      "Yes", but "No".



      For a short ranged hopper - Getting from A to B locally where you park the vehicle in a top up station before going about your day - compressed gas could work. If the trips are short enough. If they're flying, they'll be VERY short trips. [Poking around on Google can come up with light cars/bikes running on compressed air with a range of a few miles.]



      However there is a limit to how far you could push such a technology, and you quickly run into several problems.



      Eventually you hit a limit on compressed Gas, and will have to reach to liquid storage to fit any more into a tank. Thanks to the ideal gas law, and common phase-change physics, this then jumps the energy required to actually use it - As you try to use the physical energy stored in the compressed gas, you need more thermal energy exchange to let the gas keep expanding.



      As you attempt to expand your range, you are hit with the problem of fuel-tyranny: To carry fuel/energy, you need to burn/use fuel/energy to get it to the place where you will use it to move farther.



      Say you have something that uses X fuel to move Y distance. At first glance it is easy to assume that 2X fuel will give you 2Y distance, but you need to use fuel to carry the extra fuel... So you add more than 2X, but might need to add more power/thrust to actually move that much fuel, which in turn means you need more fuel to provide it, and... Well you can see how that quickly starts to run away. [If you don't see that, go play Kerbal Space Program, and 'add more boosters']



      Beyond that there is also safety issues with compressed gas. "Heavy" gasses can displace normal atmosphere, and come with smothering risks. Even just regular gases come with the risks of critical failures that can make them more risky than traditional fuels past a specific energy density.
      Compare the risks of a 'small leak' in a tank of jet fuel - It slowly leaks out over time. Even if it is on fire, that energy is dispersed steadily over time. If you rupture a compressed gas tank, then the nature is that it will want to expend nearly all of its energy in a very short time. [And gets extra interesting if the compressed gas is reactive, as it will want to violently force itself out of storage from even a relatively small failure.]







      share|improve this answer












      share|improve this answer



      share|improve this answer










      answered Apr 5 at 16:27









      TheLucklessTheLuckless

      58615




      58615







      • 5




        $begingroup$
        In the "fuel to carry fuel" department, long-range jets are about 50% fuel by weight, and get 12-15 hours of flying time out of it. Compressed gas is considerably less energy-dense than jet fuel.
        $endgroup$
        – Mark
        Apr 5 at 20:22












      • 5




        $begingroup$
        In the "fuel to carry fuel" department, long-range jets are about 50% fuel by weight, and get 12-15 hours of flying time out of it. Compressed gas is considerably less energy-dense than jet fuel.
        $endgroup$
        – Mark
        Apr 5 at 20:22







      5




      5




      $begingroup$
      In the "fuel to carry fuel" department, long-range jets are about 50% fuel by weight, and get 12-15 hours of flying time out of it. Compressed gas is considerably less energy-dense than jet fuel.
      $endgroup$
      – Mark
      Apr 5 at 20:22




      $begingroup$
      In the "fuel to carry fuel" department, long-range jets are about 50% fuel by weight, and get 12-15 hours of flying time out of it. Compressed gas is considerably less energy-dense than jet fuel.
      $endgroup$
      – Mark
      Apr 5 at 20:22











      10












      $begingroup$

      In short, no, this would not be a practical vehicle. Certainly it wouldn't provide you with days of endurance.



      Your vehicle is basically a less efficient (albeit safer) rocket. Rockets use combustion to increase the pressure and temperature of their exhaust as well as expel it, but after that the principle is the same: stuff leaves your vehicle in one direction, your vehicle gets pushed in the opposite. However, this means that you run into perhaps the biggest problem in rocketry. Your thrust has to carry not just your vehicle's frame and its payload but all of its unused fuel (or unreleased pressurized gas, in this case).



      This leads to the Tsiolkovsky rocket equation, one of if not the most famous equations in rocket science, which describes the relationship between a rocket's final velocity (= how long the engines are burning) and its mass fraction, or how much of the rocket is fuel vs. structure and payload. The longer you want to burn, the faster the propellant mass fraction increases until eventually you have no room for a useful payload, or even no room for your rocket.



      In your case, although you're not using your engines continuously to produce a single final velocity, you're still burdened by how long you need to continue using them. (This is particularly true in the case of a hovering vehicle where you're constantly fighting against gravity. It would be less true, though still noticeable, in a ground vehicle that only uses fuel when moving.) The longer you want your vehicle to be able to travel without refueling, the greater percentage of it needs to be fuel, without limit.



      So how do terrestrial vehicles like cars and airplanes escape this? It's simple: they make use of the atmosphere. Cars pull in oxygen from the air for combustion, making their fuel vastly more weight-efficient. Airplanes exploit the properties of the air to generate aerodynamic lift, reducing their thrust needs.



      Given their other technological feats, your people might honestly be best off using combustion engines, then having processing plants recapture carbon dioxide and other combustion products from the air and process them back into fuel. This would require a lot of power, but it would offload the power needs from a small, inefficient mobile platform to a large, efficient stationary one. (In this case the gasoline or whatever is best considered as a type of battery.) Another option would be to carry batteries and have electrically-driven rotors or compressors - basically a very large recreational quadcopter.



      As a final aside, having a lot of personal vehicles spewing xenon or other heavy gases everywhere might not be all that safe. Heavier-than-air gas will tend to pool in low places and displace oxygen, which can easily kill people.






      share|improve this answer









      $endgroup$












      • $begingroup$
        Can someone elaborate on compressors? When they're powerful enough they're basically jet engines facing down.
        $endgroup$
        – Shawn V. Wilson
        Apr 5 at 21:47










      • $begingroup$
        @ShawnV.Wilson I mostly threw that for completeness' sake. I don't really know much about how you'd configure an electrical-powered aircraft at that scale.
        $endgroup$
        – Cadence
        Apr 5 at 22:10















      10












      $begingroup$

      In short, no, this would not be a practical vehicle. Certainly it wouldn't provide you with days of endurance.



      Your vehicle is basically a less efficient (albeit safer) rocket. Rockets use combustion to increase the pressure and temperature of their exhaust as well as expel it, but after that the principle is the same: stuff leaves your vehicle in one direction, your vehicle gets pushed in the opposite. However, this means that you run into perhaps the biggest problem in rocketry. Your thrust has to carry not just your vehicle's frame and its payload but all of its unused fuel (or unreleased pressurized gas, in this case).



      This leads to the Tsiolkovsky rocket equation, one of if not the most famous equations in rocket science, which describes the relationship between a rocket's final velocity (= how long the engines are burning) and its mass fraction, or how much of the rocket is fuel vs. structure and payload. The longer you want to burn, the faster the propellant mass fraction increases until eventually you have no room for a useful payload, or even no room for your rocket.



      In your case, although you're not using your engines continuously to produce a single final velocity, you're still burdened by how long you need to continue using them. (This is particularly true in the case of a hovering vehicle where you're constantly fighting against gravity. It would be less true, though still noticeable, in a ground vehicle that only uses fuel when moving.) The longer you want your vehicle to be able to travel without refueling, the greater percentage of it needs to be fuel, without limit.



      So how do terrestrial vehicles like cars and airplanes escape this? It's simple: they make use of the atmosphere. Cars pull in oxygen from the air for combustion, making their fuel vastly more weight-efficient. Airplanes exploit the properties of the air to generate aerodynamic lift, reducing their thrust needs.



      Given their other technological feats, your people might honestly be best off using combustion engines, then having processing plants recapture carbon dioxide and other combustion products from the air and process them back into fuel. This would require a lot of power, but it would offload the power needs from a small, inefficient mobile platform to a large, efficient stationary one. (In this case the gasoline or whatever is best considered as a type of battery.) Another option would be to carry batteries and have electrically-driven rotors or compressors - basically a very large recreational quadcopter.



      As a final aside, having a lot of personal vehicles spewing xenon or other heavy gases everywhere might not be all that safe. Heavier-than-air gas will tend to pool in low places and displace oxygen, which can easily kill people.






      share|improve this answer









      $endgroup$












      • $begingroup$
        Can someone elaborate on compressors? When they're powerful enough they're basically jet engines facing down.
        $endgroup$
        – Shawn V. Wilson
        Apr 5 at 21:47










      • $begingroup$
        @ShawnV.Wilson I mostly threw that for completeness' sake. I don't really know much about how you'd configure an electrical-powered aircraft at that scale.
        $endgroup$
        – Cadence
        Apr 5 at 22:10













      10












      10








      10





      $begingroup$

      In short, no, this would not be a practical vehicle. Certainly it wouldn't provide you with days of endurance.



      Your vehicle is basically a less efficient (albeit safer) rocket. Rockets use combustion to increase the pressure and temperature of their exhaust as well as expel it, but after that the principle is the same: stuff leaves your vehicle in one direction, your vehicle gets pushed in the opposite. However, this means that you run into perhaps the biggest problem in rocketry. Your thrust has to carry not just your vehicle's frame and its payload but all of its unused fuel (or unreleased pressurized gas, in this case).



      This leads to the Tsiolkovsky rocket equation, one of if not the most famous equations in rocket science, which describes the relationship between a rocket's final velocity (= how long the engines are burning) and its mass fraction, or how much of the rocket is fuel vs. structure and payload. The longer you want to burn, the faster the propellant mass fraction increases until eventually you have no room for a useful payload, or even no room for your rocket.



      In your case, although you're not using your engines continuously to produce a single final velocity, you're still burdened by how long you need to continue using them. (This is particularly true in the case of a hovering vehicle where you're constantly fighting against gravity. It would be less true, though still noticeable, in a ground vehicle that only uses fuel when moving.) The longer you want your vehicle to be able to travel without refueling, the greater percentage of it needs to be fuel, without limit.



      So how do terrestrial vehicles like cars and airplanes escape this? It's simple: they make use of the atmosphere. Cars pull in oxygen from the air for combustion, making their fuel vastly more weight-efficient. Airplanes exploit the properties of the air to generate aerodynamic lift, reducing their thrust needs.



      Given their other technological feats, your people might honestly be best off using combustion engines, then having processing plants recapture carbon dioxide and other combustion products from the air and process them back into fuel. This would require a lot of power, but it would offload the power needs from a small, inefficient mobile platform to a large, efficient stationary one. (In this case the gasoline or whatever is best considered as a type of battery.) Another option would be to carry batteries and have electrically-driven rotors or compressors - basically a very large recreational quadcopter.



      As a final aside, having a lot of personal vehicles spewing xenon or other heavy gases everywhere might not be all that safe. Heavier-than-air gas will tend to pool in low places and displace oxygen, which can easily kill people.






      share|improve this answer









      $endgroup$



      In short, no, this would not be a practical vehicle. Certainly it wouldn't provide you with days of endurance.



      Your vehicle is basically a less efficient (albeit safer) rocket. Rockets use combustion to increase the pressure and temperature of their exhaust as well as expel it, but after that the principle is the same: stuff leaves your vehicle in one direction, your vehicle gets pushed in the opposite. However, this means that you run into perhaps the biggest problem in rocketry. Your thrust has to carry not just your vehicle's frame and its payload but all of its unused fuel (or unreleased pressurized gas, in this case).



      This leads to the Tsiolkovsky rocket equation, one of if not the most famous equations in rocket science, which describes the relationship between a rocket's final velocity (= how long the engines are burning) and its mass fraction, or how much of the rocket is fuel vs. structure and payload. The longer you want to burn, the faster the propellant mass fraction increases until eventually you have no room for a useful payload, or even no room for your rocket.



      In your case, although you're not using your engines continuously to produce a single final velocity, you're still burdened by how long you need to continue using them. (This is particularly true in the case of a hovering vehicle where you're constantly fighting against gravity. It would be less true, though still noticeable, in a ground vehicle that only uses fuel when moving.) The longer you want your vehicle to be able to travel without refueling, the greater percentage of it needs to be fuel, without limit.



      So how do terrestrial vehicles like cars and airplanes escape this? It's simple: they make use of the atmosphere. Cars pull in oxygen from the air for combustion, making their fuel vastly more weight-efficient. Airplanes exploit the properties of the air to generate aerodynamic lift, reducing their thrust needs.



      Given their other technological feats, your people might honestly be best off using combustion engines, then having processing plants recapture carbon dioxide and other combustion products from the air and process them back into fuel. This would require a lot of power, but it would offload the power needs from a small, inefficient mobile platform to a large, efficient stationary one. (In this case the gasoline or whatever is best considered as a type of battery.) Another option would be to carry batteries and have electrically-driven rotors or compressors - basically a very large recreational quadcopter.



      As a final aside, having a lot of personal vehicles spewing xenon or other heavy gases everywhere might not be all that safe. Heavier-than-air gas will tend to pool in low places and displace oxygen, which can easily kill people.







      share|improve this answer












      share|improve this answer



      share|improve this answer










      answered Apr 5 at 16:13









      CadenceCadence

      15.7k53056




      15.7k53056











      • $begingroup$
        Can someone elaborate on compressors? When they're powerful enough they're basically jet engines facing down.
        $endgroup$
        – Shawn V. Wilson
        Apr 5 at 21:47










      • $begingroup$
        @ShawnV.Wilson I mostly threw that for completeness' sake. I don't really know much about how you'd configure an electrical-powered aircraft at that scale.
        $endgroup$
        – Cadence
        Apr 5 at 22:10
















      • $begingroup$
        Can someone elaborate on compressors? When they're powerful enough they're basically jet engines facing down.
        $endgroup$
        – Shawn V. Wilson
        Apr 5 at 21:47










      • $begingroup$
        @ShawnV.Wilson I mostly threw that for completeness' sake. I don't really know much about how you'd configure an electrical-powered aircraft at that scale.
        $endgroup$
        – Cadence
        Apr 5 at 22:10















      $begingroup$
      Can someone elaborate on compressors? When they're powerful enough they're basically jet engines facing down.
      $endgroup$
      – Shawn V. Wilson
      Apr 5 at 21:47




      $begingroup$
      Can someone elaborate on compressors? When they're powerful enough they're basically jet engines facing down.
      $endgroup$
      – Shawn V. Wilson
      Apr 5 at 21:47












      $begingroup$
      @ShawnV.Wilson I mostly threw that for completeness' sake. I don't really know much about how you'd configure an electrical-powered aircraft at that scale.
      $endgroup$
      – Cadence
      Apr 5 at 22:10




      $begingroup$
      @ShawnV.Wilson I mostly threw that for completeness' sake. I don't really know much about how you'd configure an electrical-powered aircraft at that scale.
      $endgroup$
      – Cadence
      Apr 5 at 22:10











      2












      $begingroup$

      As others have explained in detail, your limiting factor is how much fuel you can carry since there's a limit to how much you can compress a gas before you start running into problems. An indestructible tank won't help much, as the gas itself will condense into a liquid or start doing other strange things at high-enough pressures. The only way to make this remotely practical is if you can make your vehicle as fuel-efficient as possible.



      When traveling by air, you'll spend more fuel fighting gravity than anything else. So don't fight it. An airship or aerostat of some sort could stay in the air without expending any fuel, so you can dedicate your onboard fuel to propulsion. Travel in the direction of the wind could be nearly free, albeit not that fast.



      For a vehicle like this to be practical, you'd need to use the air that you're flying through as fuel instead of carrying a limited supply of it with you in tanks. You could have electric engines that suck in air and force it out a narrow nozzle on the rear of the vehicle. You're not moving at extremely high speeds, but at least it works.






      share|improve this answer









      $endgroup$

















        2












        $begingroup$

        As others have explained in detail, your limiting factor is how much fuel you can carry since there's a limit to how much you can compress a gas before you start running into problems. An indestructible tank won't help much, as the gas itself will condense into a liquid or start doing other strange things at high-enough pressures. The only way to make this remotely practical is if you can make your vehicle as fuel-efficient as possible.



        When traveling by air, you'll spend more fuel fighting gravity than anything else. So don't fight it. An airship or aerostat of some sort could stay in the air without expending any fuel, so you can dedicate your onboard fuel to propulsion. Travel in the direction of the wind could be nearly free, albeit not that fast.



        For a vehicle like this to be practical, you'd need to use the air that you're flying through as fuel instead of carrying a limited supply of it with you in tanks. You could have electric engines that suck in air and force it out a narrow nozzle on the rear of the vehicle. You're not moving at extremely high speeds, but at least it works.






        share|improve this answer









        $endgroup$















          2












          2








          2





          $begingroup$

          As others have explained in detail, your limiting factor is how much fuel you can carry since there's a limit to how much you can compress a gas before you start running into problems. An indestructible tank won't help much, as the gas itself will condense into a liquid or start doing other strange things at high-enough pressures. The only way to make this remotely practical is if you can make your vehicle as fuel-efficient as possible.



          When traveling by air, you'll spend more fuel fighting gravity than anything else. So don't fight it. An airship or aerostat of some sort could stay in the air without expending any fuel, so you can dedicate your onboard fuel to propulsion. Travel in the direction of the wind could be nearly free, albeit not that fast.



          For a vehicle like this to be practical, you'd need to use the air that you're flying through as fuel instead of carrying a limited supply of it with you in tanks. You could have electric engines that suck in air and force it out a narrow nozzle on the rear of the vehicle. You're not moving at extremely high speeds, but at least it works.






          share|improve this answer









          $endgroup$



          As others have explained in detail, your limiting factor is how much fuel you can carry since there's a limit to how much you can compress a gas before you start running into problems. An indestructible tank won't help much, as the gas itself will condense into a liquid or start doing other strange things at high-enough pressures. The only way to make this remotely practical is if you can make your vehicle as fuel-efficient as possible.



          When traveling by air, you'll spend more fuel fighting gravity than anything else. So don't fight it. An airship or aerostat of some sort could stay in the air without expending any fuel, so you can dedicate your onboard fuel to propulsion. Travel in the direction of the wind could be nearly free, albeit not that fast.



          For a vehicle like this to be practical, you'd need to use the air that you're flying through as fuel instead of carrying a limited supply of it with you in tanks. You could have electric engines that suck in air and force it out a narrow nozzle on the rear of the vehicle. You're not moving at extremely high speeds, but at least it works.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Apr 5 at 21:05









          btabta

          2,792714




          2,792714





















              2












              $begingroup$

              What you need to realize is that energy is $E = fracv^2cdot m2$ while impulse is $p = vcdot m$.



              Each second, earth's gravity transfers an impulse of $p = gcdot m_ocdot 1s$ onto any object of mass $m_o$. If that object is to remain at rest (hovering in the air, or lying on the ground, doesn't really matter as long as it's not moving...), it must constantly get rid of this impulse. The object on the ground does so by transferring the impulse to the ground, an object in the air must transfer the impulse to the air.



              Note that the last paragraph did not mention energy at all. The important figure is the impulse, only.



              Now, look at the two equations for $E$ and $p$. The energy is actually $E = fracv^2cdot m2 = fracvp2 = fracp^22m$. I.e. if you use an infinite mass, you don't need any energy at all (that's the object on the ground, which effectively uses the entire earth to get rid of the impulse). The smaller the amount of mass that you use, the more energy you need.



              If you use your stored air only, you are in the worst possible regime: You are wasting Gigajoules of energy for nothing. If you just double the amount of air you accelerate by driving a simple, single stage turbine with your compressed gas, you have already doubled the lifetime of your fuel! The more outside air you accelerate, the longer your fuel lasts.



              So, no matter how dense your pressured-air-energy-storage is, your vehicles will always suck in air from above and blow it downwards, simply because the fuel will last so much longer. You can basically assume that any hovering air vehicle will always use as much of its upper surface area for sucking in air as possible. Because, using only half the surface area means only half the lifetime of your fuel supply.




              Btw, this is also the reason why helicopters need more fuel while hovering than when they are flying at moderate speed: The hovering helicopter can only interact with the air directly around and above it, which has already been accelerated by its hovering. The flying helicopter is constantly interacting with fresh air at rest, and thus distributing its impulse to more air. More air accelerated $Rightarrow$ air accelerated to lower speeds $Rightarrow$ less energy used.



              Airplanes take this to the extreme: They maximize the amount of air they interact with per second by flying at 800km/h, and thus they minimize the resulting downwards speed of the air they leave behind. The burning fuel in the engine just turns a turbine which uses blades to accelerate as much air as possible backwards, which in turn moves the air foil to accelerate as much air downward as possible to be as efficient as possible. This double indirection is what makes current air planes as efficient as they are, enabling them to fly half-way around the earth without a stop.






              share|improve this answer









              $endgroup$

















                2












                $begingroup$

                What you need to realize is that energy is $E = fracv^2cdot m2$ while impulse is $p = vcdot m$.



                Each second, earth's gravity transfers an impulse of $p = gcdot m_ocdot 1s$ onto any object of mass $m_o$. If that object is to remain at rest (hovering in the air, or lying on the ground, doesn't really matter as long as it's not moving...), it must constantly get rid of this impulse. The object on the ground does so by transferring the impulse to the ground, an object in the air must transfer the impulse to the air.



                Note that the last paragraph did not mention energy at all. The important figure is the impulse, only.



                Now, look at the two equations for $E$ and $p$. The energy is actually $E = fracv^2cdot m2 = fracvp2 = fracp^22m$. I.e. if you use an infinite mass, you don't need any energy at all (that's the object on the ground, which effectively uses the entire earth to get rid of the impulse). The smaller the amount of mass that you use, the more energy you need.



                If you use your stored air only, you are in the worst possible regime: You are wasting Gigajoules of energy for nothing. If you just double the amount of air you accelerate by driving a simple, single stage turbine with your compressed gas, you have already doubled the lifetime of your fuel! The more outside air you accelerate, the longer your fuel lasts.



                So, no matter how dense your pressured-air-energy-storage is, your vehicles will always suck in air from above and blow it downwards, simply because the fuel will last so much longer. You can basically assume that any hovering air vehicle will always use as much of its upper surface area for sucking in air as possible. Because, using only half the surface area means only half the lifetime of your fuel supply.




                Btw, this is also the reason why helicopters need more fuel while hovering than when they are flying at moderate speed: The hovering helicopter can only interact with the air directly around and above it, which has already been accelerated by its hovering. The flying helicopter is constantly interacting with fresh air at rest, and thus distributing its impulse to more air. More air accelerated $Rightarrow$ air accelerated to lower speeds $Rightarrow$ less energy used.



                Airplanes take this to the extreme: They maximize the amount of air they interact with per second by flying at 800km/h, and thus they minimize the resulting downwards speed of the air they leave behind. The burning fuel in the engine just turns a turbine which uses blades to accelerate as much air as possible backwards, which in turn moves the air foil to accelerate as much air downward as possible to be as efficient as possible. This double indirection is what makes current air planes as efficient as they are, enabling them to fly half-way around the earth without a stop.






                share|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  What you need to realize is that energy is $E = fracv^2cdot m2$ while impulse is $p = vcdot m$.



                  Each second, earth's gravity transfers an impulse of $p = gcdot m_ocdot 1s$ onto any object of mass $m_o$. If that object is to remain at rest (hovering in the air, or lying on the ground, doesn't really matter as long as it's not moving...), it must constantly get rid of this impulse. The object on the ground does so by transferring the impulse to the ground, an object in the air must transfer the impulse to the air.



                  Note that the last paragraph did not mention energy at all. The important figure is the impulse, only.



                  Now, look at the two equations for $E$ and $p$. The energy is actually $E = fracv^2cdot m2 = fracvp2 = fracp^22m$. I.e. if you use an infinite mass, you don't need any energy at all (that's the object on the ground, which effectively uses the entire earth to get rid of the impulse). The smaller the amount of mass that you use, the more energy you need.



                  If you use your stored air only, you are in the worst possible regime: You are wasting Gigajoules of energy for nothing. If you just double the amount of air you accelerate by driving a simple, single stage turbine with your compressed gas, you have already doubled the lifetime of your fuel! The more outside air you accelerate, the longer your fuel lasts.



                  So, no matter how dense your pressured-air-energy-storage is, your vehicles will always suck in air from above and blow it downwards, simply because the fuel will last so much longer. You can basically assume that any hovering air vehicle will always use as much of its upper surface area for sucking in air as possible. Because, using only half the surface area means only half the lifetime of your fuel supply.




                  Btw, this is also the reason why helicopters need more fuel while hovering than when they are flying at moderate speed: The hovering helicopter can only interact with the air directly around and above it, which has already been accelerated by its hovering. The flying helicopter is constantly interacting with fresh air at rest, and thus distributing its impulse to more air. More air accelerated $Rightarrow$ air accelerated to lower speeds $Rightarrow$ less energy used.



                  Airplanes take this to the extreme: They maximize the amount of air they interact with per second by flying at 800km/h, and thus they minimize the resulting downwards speed of the air they leave behind. The burning fuel in the engine just turns a turbine which uses blades to accelerate as much air as possible backwards, which in turn moves the air foil to accelerate as much air downward as possible to be as efficient as possible. This double indirection is what makes current air planes as efficient as they are, enabling them to fly half-way around the earth without a stop.






                  share|improve this answer









                  $endgroup$



                  What you need to realize is that energy is $E = fracv^2cdot m2$ while impulse is $p = vcdot m$.



                  Each second, earth's gravity transfers an impulse of $p = gcdot m_ocdot 1s$ onto any object of mass $m_o$. If that object is to remain at rest (hovering in the air, or lying on the ground, doesn't really matter as long as it's not moving...), it must constantly get rid of this impulse. The object on the ground does so by transferring the impulse to the ground, an object in the air must transfer the impulse to the air.



                  Note that the last paragraph did not mention energy at all. The important figure is the impulse, only.



                  Now, look at the two equations for $E$ and $p$. The energy is actually $E = fracv^2cdot m2 = fracvp2 = fracp^22m$. I.e. if you use an infinite mass, you don't need any energy at all (that's the object on the ground, which effectively uses the entire earth to get rid of the impulse). The smaller the amount of mass that you use, the more energy you need.



                  If you use your stored air only, you are in the worst possible regime: You are wasting Gigajoules of energy for nothing. If you just double the amount of air you accelerate by driving a simple, single stage turbine with your compressed gas, you have already doubled the lifetime of your fuel! The more outside air you accelerate, the longer your fuel lasts.



                  So, no matter how dense your pressured-air-energy-storage is, your vehicles will always suck in air from above and blow it downwards, simply because the fuel will last so much longer. You can basically assume that any hovering air vehicle will always use as much of its upper surface area for sucking in air as possible. Because, using only half the surface area means only half the lifetime of your fuel supply.




                  Btw, this is also the reason why helicopters need more fuel while hovering than when they are flying at moderate speed: The hovering helicopter can only interact with the air directly around and above it, which has already been accelerated by its hovering. The flying helicopter is constantly interacting with fresh air at rest, and thus distributing its impulse to more air. More air accelerated $Rightarrow$ air accelerated to lower speeds $Rightarrow$ less energy used.



                  Airplanes take this to the extreme: They maximize the amount of air they interact with per second by flying at 800km/h, and thus they minimize the resulting downwards speed of the air they leave behind. The burning fuel in the engine just turns a turbine which uses blades to accelerate as much air as possible backwards, which in turn moves the air foil to accelerate as much air downward as possible to be as efficient as possible. This double indirection is what makes current air planes as efficient as they are, enabling them to fly half-way around the earth without a stop.







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered Apr 5 at 23:10









                  cmastercmaster

                  3,842916




                  3,842916





















                      1












                      $begingroup$

                      I expect someone's going to point out this has massive scaling issues, but hey, you have near infinite energy, so let's swap things: instead of having a bunch of jets running over the surface trying to use compressed air, let's convert the surface into basically a giant air hockey table and make the transports just relatively light with solar sails. The transports have networked computers that connect to the transport system to indicate where they want to go, and then there are a series of "lasers" on the surface a scattered points to provide the horizontal thrust necessary (similar to the proposed solar sails for travel within solar system)



                      Dealing with any unintended consequences of the awesomeness of this setup are left as an exercise for the reader.






                      share|improve this answer









                      $endgroup$








                      • 1




                        $begingroup$
                        If you trained people right, you could omit the lasers and just have them "skate" over the surface on leg strength alone - a novel approach to the moving sidewalk (in that it does not, in fact, move).
                        $endgroup$
                        – Cadence
                        Apr 5 at 22:30















                      1












                      $begingroup$

                      I expect someone's going to point out this has massive scaling issues, but hey, you have near infinite energy, so let's swap things: instead of having a bunch of jets running over the surface trying to use compressed air, let's convert the surface into basically a giant air hockey table and make the transports just relatively light with solar sails. The transports have networked computers that connect to the transport system to indicate where they want to go, and then there are a series of "lasers" on the surface a scattered points to provide the horizontal thrust necessary (similar to the proposed solar sails for travel within solar system)



                      Dealing with any unintended consequences of the awesomeness of this setup are left as an exercise for the reader.






                      share|improve this answer









                      $endgroup$








                      • 1




                        $begingroup$
                        If you trained people right, you could omit the lasers and just have them "skate" over the surface on leg strength alone - a novel approach to the moving sidewalk (in that it does not, in fact, move).
                        $endgroup$
                        – Cadence
                        Apr 5 at 22:30













                      1












                      1








                      1





                      $begingroup$

                      I expect someone's going to point out this has massive scaling issues, but hey, you have near infinite energy, so let's swap things: instead of having a bunch of jets running over the surface trying to use compressed air, let's convert the surface into basically a giant air hockey table and make the transports just relatively light with solar sails. The transports have networked computers that connect to the transport system to indicate where they want to go, and then there are a series of "lasers" on the surface a scattered points to provide the horizontal thrust necessary (similar to the proposed solar sails for travel within solar system)



                      Dealing with any unintended consequences of the awesomeness of this setup are left as an exercise for the reader.






                      share|improve this answer









                      $endgroup$



                      I expect someone's going to point out this has massive scaling issues, but hey, you have near infinite energy, so let's swap things: instead of having a bunch of jets running over the surface trying to use compressed air, let's convert the surface into basically a giant air hockey table and make the transports just relatively light with solar sails. The transports have networked computers that connect to the transport system to indicate where they want to go, and then there are a series of "lasers" on the surface a scattered points to provide the horizontal thrust necessary (similar to the proposed solar sails for travel within solar system)



                      Dealing with any unintended consequences of the awesomeness of this setup are left as an exercise for the reader.







                      share|improve this answer












                      share|improve this answer



                      share|improve this answer










                      answered Apr 5 at 22:15









                      FoonFoon

                      1713




                      1713







                      • 1




                        $begingroup$
                        If you trained people right, you could omit the lasers and just have them "skate" over the surface on leg strength alone - a novel approach to the moving sidewalk (in that it does not, in fact, move).
                        $endgroup$
                        – Cadence
                        Apr 5 at 22:30












                      • 1




                        $begingroup$
                        If you trained people right, you could omit the lasers and just have them "skate" over the surface on leg strength alone - a novel approach to the moving sidewalk (in that it does not, in fact, move).
                        $endgroup$
                        – Cadence
                        Apr 5 at 22:30







                      1




                      1




                      $begingroup$
                      If you trained people right, you could omit the lasers and just have them "skate" over the surface on leg strength alone - a novel approach to the moving sidewalk (in that it does not, in fact, move).
                      $endgroup$
                      – Cadence
                      Apr 5 at 22:30




                      $begingroup$
                      If you trained people right, you could omit the lasers and just have them "skate" over the surface on leg strength alone - a novel approach to the moving sidewalk (in that it does not, in fact, move).
                      $endgroup$
                      – Cadence
                      Apr 5 at 22:30

















                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Worldbuilding Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f143340%2fcould-an-aircraft-fly-or-hover-using-only-jets-of-compressed-air%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      getting Checkpoint VPN SSL Network Extender working in the command lineHow to connect to CheckPoint VPN on Ubuntu 18.04LTS?Will the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayVPN SSL Network Extender in FirefoxLinux Checkpoint SNX tool configuration issuesCheck Point - Connect under Linux - snx + OTPSNX VPN Ububuntu 18.XXUsing Checkpoint VPN SSL Network Extender CLI with certificateVPN with network manager (nm-applet) is not workingWill the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayImport VPN config files to NetworkManager from command lineTrouble connecting to VPN using network-manager, while command line worksStart a VPN connection with PPTP protocol on command linestarting a docker service daemon breaks the vpn networkCan't connect to vpn with Network-managerVPN SSL Network Extender in FirefoxUsing Checkpoint VPN SSL Network Extender CLI with certificate

                      NetworkManager fails with “Could not find source connection”Trouble connecting to VPN using network-manager, while command line worksHow can I be notified about state changes to a VPN adapterBacktrack 5 R3 - Refuses to connect to VPNFeed all traffic through OpenVPN for a specific network namespace onlyRun daemon on startup in Debian once openvpn connection establishedpfsense tcp connection between openvpn and lan is brokenInternet connection problem with web browsers onlyWhy does NetworkManager explicitly support tun/tap devices?Browser issues with VPNTwo IP addresses assigned to the same network card - OpenVPN issues?Cannot connect to WiFi with nmcli, although secrets are provided

                      대한민국 목차 국명 지리 역사 정치 국방 경제 사회 문화 국제 순위 관련 항목 각주 외부 링크 둘러보기 메뉴북위 37° 34′ 08″ 동경 126° 58′ 36″ / 북위 37.568889° 동경 126.976667°  / 37.568889; 126.976667ehThe Korean Repository문단을 편집문단을 편집추가해Clarkson PLC 사Report for Selected Countries and Subjects-Korea“Human Development Index and its components: P.198”“http://www.law.go.kr/%EB%B2%95%EB%A0%B9/%EB%8C%80%ED%95%9C%EB%AF%BC%EA%B5%AD%EA%B5%AD%EA%B8%B0%EB%B2%95”"한국은 국제법상 한반도 유일 합법정부 아니다" - 오마이뉴스 모바일Report for Selected Countries and Subjects: South Korea격동의 역사와 함께한 조선일보 90년 : 조선일보 인수해 혁신시킨 신석우, 임시정부 때는 '대한민국' 국호(國號) 정해《우리가 몰랐던 우리 역사: 나라 이름의 비밀을 찾아가는 역사 여행》“남북 공식호칭 ‘남한’‘북한’으로 쓴다”“Corea 대 Korea, 누가 이긴 거야?”국내기후자료 - 한국[김대중 前 대통령 서거] 과감한 구조개혁 'DJ노믹스'로 최단기간 환란극복 :: 네이버 뉴스“이라크 "韓-쿠르드 유전개발 MOU 승인 안해"(종합)”“해외 우리국민 추방사례 43%가 일본”차기전차 K2'흑표'의 세계 최고 전력 분석, 쿠키뉴스 엄기영, 2007-03-02두산인프라, 헬기잡는 장갑차 'K21'...내년부터 공급, 고뉴스 이대준, 2008-10-30과거 내용 찾기mk 뉴스 - 구매력 기준으로 보면 한국 1인당 소득 3만弗과거 내용 찾기"The N-11: More Than an Acronym"Archived조선일보 최우석, 2008-11-01Global 500 2008: Countries - South Korea“몇년째 '시한폭탄'... 가계부채, 올해는 터질까”가구당 부채 5000만원 처음 넘어서“‘빚’으로 내몰리는 사회.. 위기의 가계대출”“[경제365] 공공부문 부채 급증…800조 육박”“"소득 양극화 다소 완화...불평등은 여전"”“공정사회·공생발전 한참 멀었네”iSuppli,08年2QのDRAMシェア・ランキングを発表(08/8/11)South Korea dominates shipbuilding industry | Stock Market News & Stocks to Watch from StraightStocks한국 자동차 생산, 3년 연속 세계 5위자동차수출 '현대-삼성 웃고 기아-대우-쌍용은 울고' 과거 내용 찾기동반성장위 창립 1주년 맞아Archived"중기적합 3개업종 합의 무시한 채 선정"李대통령, 사업 무분별 확장 소상공인 생계 위협 질타삼성-LG, 서민업종인 빵·분식사업 잇따라 철수상생은 뒷전…SSM ‘몸집 불리기’ 혈안Archived“경부고속도에 '아시안하이웨이' 표지판”'철의 실크로드' 앞서 '말(言)의 실크로드'부터, 프레시안 정창현, 2008-10-01“'서울 지하철은 안전한가?'”“서울시 “올해 안에 모든 지하철역 스크린도어 설치””“부산지하철 1,2호선 승강장 안전펜스 설치 완료”“전교조, 정부 노조 통계서 처음 빠져”“[Weekly BIZ] 도요타 '제로 이사회'가 리콜 사태 불러들였다”“S Korea slams high tuition costs”““정치가 여론 양극화 부채질… 합리주의 절실””“〈"`촛불집회'는 민주주의의 질적 변화 상징"〉”““촛불집회가 민주주의 왜곡 초래””“국민 65%, "한국 노사관계 대립적"”“한국 국가경쟁력 27위‥노사관계 '꼴찌'”“제대로 형성되지 않은 대한민국 이념지형”“[신년기획-갈등의 시대] 갈등지수 OECD 4위…사회적 손실 GDP 27% 무려 300조”“2012 총선-대선의 키워드는 '국민과 소통'”“한국 삶의 질 27위, 2000년과 2008년 연속 하위권 머물러”“[해피 코리아] 행복점수 68점…해외 평가선 '낙제점'”“한국 어린이·청소년 행복지수 3년 연속 OECD ‘꼴찌’”“한국 이혼율 OECD중 8위”“[통계청] 한국 이혼율 OECD 4위”“오피니언 [이렇게 생각한다] `부부의 날` 에 돌아본 이혼율 1위 한국”“Suicide Rates by Country, Global Health Observatory Data Repository.”“1. 또 다른 차별”“오피니언 [편집자에게] '왕따'와 '패거리 정치' 심리는 닮은꼴”“[미래한국리포트] 무한경쟁에 빠진 대한민국”“대학생 98% "외모가 경쟁력이라는 말 동의"”“특급호텔 웨딩·200만원대 유모차… "남보다 더…" 호화病, 고질병 됐다”“[스트레스 공화국] ① 경쟁사회, 스트레스 쌓인다”““매일 30여명 자살 한국, 의사보다 무속인에…””“"자살 부르는 '우울증', 환자 중 85% 치료 안 받아"”“정신병원을 가다”“대한민국도 ‘묻지마 범죄’,안전지대 아니다”“유엔 "학생 '성적 지향'에 따른 차별 금지하라"”“유엔아동권리위원회 보고서 및 번역본 원문”“고졸 성공스토리 담은 '제빵왕 김탁구' 드라마 나온다”“‘빛 좋은 개살구’ 고졸 취업…실습 대신 착취”원본 문서“정신건강, 사회적 편견부터 고쳐드립니다”‘소통’과 ‘행복’에 목 마른 사회가 잠들어 있던 ‘심리학’ 깨웠다“[포토] 사유리-곽금주 교수의 유쾌한 심리상담”“"올해 한국인 평균 영화관람횟수 세계 1위"(종합)”“[게임연중기획] 게임은 문화다-여가활동 1순위 게임”“영화속 ‘영어 지상주의’ …“왠지 씁쓸한데””“2월 `신문 부수 인증기관` 지정..방송법 후속작업”“무료신문 성장동력 ‘차별성’과 ‘갈등해소’”대한민국 국회 법률지식정보시스템"Pew Research Center's Religion & Public Life Project: South Korea"“amp;vwcd=MT_ZTITLE&path=인구·가구%20>%20인구총조사%20>%20인구부문%20>%20 총조사인구(2005)%20>%20전수부문&oper_YN=Y&item=&keyword=종교별%20인구& amp;lang_mode=kor&list_id= 2005년 통계청 인구 총조사”원본 문서“한국인이 좋아하는 취미와 운동 (2004-2009)”“한국인이 좋아하는 취미와 운동 (2004-2014)”Archived“한국, `부분적 언론자유국' 강등〈프리덤하우스〉”“국경없는기자회 "한국, 인터넷감시 대상국"”“한국, 조선산업 1위 유지(S. Korea Stays Top Shipbuilding Nation) RZD-Partner Portal”원본 문서“한국, 4년 만에 ‘선박건조 1위’”“옛 마산시,인터넷속도 세계 1위”“"한국 초고속 인터넷망 세계1위"”“인터넷·휴대폰 요금, 외국보다 훨씬 비싸”“한국 관세행정 6년 연속 세계 '1위'”“한국 교통사고 사망자 수 OECD 회원국 중 2위”“결핵 후진국' 한국, 환자가 급증한 이유는”“수술은 신중해야… 자칫하면 생명 위협”대한민국분류대한민국의 지도대한민국 정부대표 다국어포털대한민국 전자정부대한민국 국회한국방송공사about korea and information korea브리태니커 백과사전(한국편)론리플래닛의 정보(한국편)CIA의 세계 정보(한국편)마리암 부디아 (Mariam Budia),『한국: 하늘이 내린 한 폭의 그림』, 서울: 트랜스라틴 19호 (2012년 3월)대한민국ehehehehehehehehehehehehehehWorldCat132441370n791268020000 0001 2308 81034078029-6026373548cb11863345f(데이터)00573706ge128495