Computing the expectation of the number of balls in a box Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)There is two boxes with one with 8 balls and one with 4 ballsdrawing balls from box without replacemntRandom distribution of colored balls into boxes.Optimal Number of White BallsCompute possible outcomes when get balls from a boxPoisson Approximation Problem involving putting balls into boxesCompute expected received balls from boxesput n balls into n boxesA question of probability regarding expectation and variance of a random variable.Distributing 5 distinct balls into 3 distinct boxes

Why was the term "discrete" used in discrete logarithm?

3 doors, three guards, one stone

Right-skewed distribution with mean equals to mode?

What's the purpose of writing one's academic bio in 3rd person?

Were Kohanim forbidden from serving in King David's army?

Is 1 ppb equal to 1 μg/kg?

What are 'alternative tunings' of a guitar and why would you use them? Doesn't it make it more difficult to play?

List *all* the tuples!

Why constant symbols in a language?

Did Kevin spill real chili?

What makes black pepper strong or mild?

Is it ethical to give a final exam after the professor has quit before teaching the remaining chapters of the course?

Bonus calculation: Am I making a mountain out of a molehill?

Determinant is linear as a function of each of the rows of the matrix.

Withdrew £2800, but only £2000 shows as withdrawn on online banking; what are my obligations?

How to recreate this effect in Photoshop?

What is this single-engine low-wing propeller plane?

Stars Make Stars

What happens to sewage if there is no river near by?

Storing hydrofluoric acid before the invention of plastics

When to stop saving and start investing?

How to motivate offshore teams and trust them to deliver?

Is the address of a local variable a constexpr?

Disable hyphenation for an entire paragraph



Computing the expectation of the number of balls in a box



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)There is two boxes with one with 8 balls and one with 4 ballsdrawing balls from box without replacemntRandom distribution of colored balls into boxes.Optimal Number of White BallsCompute possible outcomes when get balls from a boxPoisson Approximation Problem involving putting balls into boxesCompute expected received balls from boxesput n balls into n boxesA question of probability regarding expectation and variance of a random variable.Distributing 5 distinct balls into 3 distinct boxes










5












$begingroup$


  • There are $r$ boxes and $n$ balls.

  • Each ball is placed in a box with equal probability, independently of the other balls.

  • Let $X_i$ be the number of balls in box $i$,
    $1 leq i leq r$.

  • Compute $mathbbEleft[X_iright], mathbbEleft[X_iX_jright]$.

I am preparing for an exam, and I have no idea how to approach this problem. Can someone push me in the right direction ?.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Are there any restrictions on $j$?
    $endgroup$
    – Sean Lee
    Apr 11 at 17:32










  • $begingroup$
    @SeanLee In the question, no. I'm guessing it would have the same restrictions as i.
    $endgroup$
    – 631
    Apr 11 at 17:34










  • $begingroup$
    Computationally, the answer to the second part appears to be $fracn^2r^2$
    $endgroup$
    – Sean Lee
    Apr 11 at 18:17










  • $begingroup$
    Have you studied covariance matrices, or vector-valued random variables, at all? That would seem to me to provide the most compact notation for solving this problem.
    $endgroup$
    – Daniel Schepler
    Apr 11 at 23:52















5












$begingroup$


  • There are $r$ boxes and $n$ balls.

  • Each ball is placed in a box with equal probability, independently of the other balls.

  • Let $X_i$ be the number of balls in box $i$,
    $1 leq i leq r$.

  • Compute $mathbbEleft[X_iright], mathbbEleft[X_iX_jright]$.

I am preparing for an exam, and I have no idea how to approach this problem. Can someone push me in the right direction ?.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Are there any restrictions on $j$?
    $endgroup$
    – Sean Lee
    Apr 11 at 17:32










  • $begingroup$
    @SeanLee In the question, no. I'm guessing it would have the same restrictions as i.
    $endgroup$
    – 631
    Apr 11 at 17:34










  • $begingroup$
    Computationally, the answer to the second part appears to be $fracn^2r^2$
    $endgroup$
    – Sean Lee
    Apr 11 at 18:17










  • $begingroup$
    Have you studied covariance matrices, or vector-valued random variables, at all? That would seem to me to provide the most compact notation for solving this problem.
    $endgroup$
    – Daniel Schepler
    Apr 11 at 23:52













5












5








5





$begingroup$


  • There are $r$ boxes and $n$ balls.

  • Each ball is placed in a box with equal probability, independently of the other balls.

  • Let $X_i$ be the number of balls in box $i$,
    $1 leq i leq r$.

  • Compute $mathbbEleft[X_iright], mathbbEleft[X_iX_jright]$.

I am preparing for an exam, and I have no idea how to approach this problem. Can someone push me in the right direction ?.










share|cite|improve this question











$endgroup$




  • There are $r$ boxes and $n$ balls.

  • Each ball is placed in a box with equal probability, independently of the other balls.

  • Let $X_i$ be the number of balls in box $i$,
    $1 leq i leq r$.

  • Compute $mathbbEleft[X_iright], mathbbEleft[X_iX_jright]$.

I am preparing for an exam, and I have no idea how to approach this problem. Can someone push me in the right direction ?.







probability-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 11 at 17:50









Felix Marin

69k7110147




69k7110147










asked Apr 11 at 17:25









631631

585




585











  • $begingroup$
    Are there any restrictions on $j$?
    $endgroup$
    – Sean Lee
    Apr 11 at 17:32










  • $begingroup$
    @SeanLee In the question, no. I'm guessing it would have the same restrictions as i.
    $endgroup$
    – 631
    Apr 11 at 17:34










  • $begingroup$
    Computationally, the answer to the second part appears to be $fracn^2r^2$
    $endgroup$
    – Sean Lee
    Apr 11 at 18:17










  • $begingroup$
    Have you studied covariance matrices, or vector-valued random variables, at all? That would seem to me to provide the most compact notation for solving this problem.
    $endgroup$
    – Daniel Schepler
    Apr 11 at 23:52
















  • $begingroup$
    Are there any restrictions on $j$?
    $endgroup$
    – Sean Lee
    Apr 11 at 17:32










  • $begingroup$
    @SeanLee In the question, no. I'm guessing it would have the same restrictions as i.
    $endgroup$
    – 631
    Apr 11 at 17:34










  • $begingroup$
    Computationally, the answer to the second part appears to be $fracn^2r^2$
    $endgroup$
    – Sean Lee
    Apr 11 at 18:17










  • $begingroup$
    Have you studied covariance matrices, or vector-valued random variables, at all? That would seem to me to provide the most compact notation for solving this problem.
    $endgroup$
    – Daniel Schepler
    Apr 11 at 23:52















$begingroup$
Are there any restrictions on $j$?
$endgroup$
– Sean Lee
Apr 11 at 17:32




$begingroup$
Are there any restrictions on $j$?
$endgroup$
– Sean Lee
Apr 11 at 17:32












$begingroup$
@SeanLee In the question, no. I'm guessing it would have the same restrictions as i.
$endgroup$
– 631
Apr 11 at 17:34




$begingroup$
@SeanLee In the question, no. I'm guessing it would have the same restrictions as i.
$endgroup$
– 631
Apr 11 at 17:34












$begingroup$
Computationally, the answer to the second part appears to be $fracn^2r^2$
$endgroup$
– Sean Lee
Apr 11 at 18:17




$begingroup$
Computationally, the answer to the second part appears to be $fracn^2r^2$
$endgroup$
– Sean Lee
Apr 11 at 18:17












$begingroup$
Have you studied covariance matrices, or vector-valued random variables, at all? That would seem to me to provide the most compact notation for solving this problem.
$endgroup$
– Daniel Schepler
Apr 11 at 23:52




$begingroup$
Have you studied covariance matrices, or vector-valued random variables, at all? That would seem to me to provide the most compact notation for solving this problem.
$endgroup$
– Daniel Schepler
Apr 11 at 23:52










3 Answers
3






active

oldest

votes


















2












$begingroup$

Since there are $r$ boxes and $n$ balls, and each ball is placed in a box with equal probability, we have:



$$ mathbbE[X_i] = fracnr $$



Now, we would like to know what is $mathbbE[X_i X_j] $.



We begin by making the following observation:



$$X_i = n - sum_jneq iX_j $$



Which gives us:



$$ X_isum_jneq iX_j = nX_i - X_i^2$$



Now, fix $i$ (we can do this because of the symmetry in the question), and thus we have:



beginalignmathbbE[X_i X_j] &= frac1rBig(mathbbE[X_i sum_jneq i X_j] + mathbbE[X_i^2]Big) \
&= frac1r mathbbE[nX_i] \
&= fracn^2r^2
endalign






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    If indeed $E(X_i X_j) = E(X_i) E(X_j)$ for $i in j$ then that implies zero correlation. I would expect a bit of negative correlation. (And indeed, my preliminary calculation based on the decomposition from VHarisop's answer seems to result in $E(X_i X_j) = fracn(n-1)r^2$ for $i ne j$ and $E(X_i^2) = fracnr + fracn(n-1)r^2$.)
    $endgroup$
    – Daniel Schepler
    Apr 11 at 22:48











  • $begingroup$
    Yeah, it seemed a little strange to me initially, but its consistent with your results btw: $frac1r[(r-1)E(X_iX_j) + E(X_i^2)] = fracn^2r^2$
    $endgroup$
    – Sean Lee
    Apr 11 at 23:01







  • 1




    $begingroup$
    I've now expanded VHarisop's answer with my calculations for part two of the question.
    $endgroup$
    – Daniel Schepler
    Apr 11 at 23:23


















4












$begingroup$

For the first part, you can use linearity of expectation to compute $mathbbE[X_i]$.
Specifically, you know that for a fixed box, the probability of putting a ball in it
is $frac1r$. Let



$$
Y_k^(i) = begincases
1 &, text if ball $k$ was placed in box $i$ \
0 &, text otherwise
endcases,
$$

which satisfies $mathbbE[Y_k^(i)] = mathbbP(Y_k^(i) = 1) = frac1r.$
Then you can write



$$
X_i = sum_j=1^n Y_j^(i) Rightarrow mathbbEX_i = sum_j=1^n frac1r = fracnr.
$$




For the second part, you can proceed similarly: $X_i = sum_k=1^n Y_k^(i)$ and $X_j = sum_ell=1^n Y_ell^(j)$, so:
$$
X_i X_j = sum_k=1^n sum_ell=1^n Y_k^(i) Y_ell^(j) implies
mathbbE(X_i X_j) = sum_k=1^n sum_ell=1^n mathbbE(Y_k^(i) Y_ell^(j)).
$$

We will first treat the case where $i ne j$. Then, for each term in the sum such that $k = ell$, we must have $Y_k^(i) Y_ell^(j) = Y_k^(i) Y_k^(j) = 0$ since it impossible for ball $k$ to be placed both in box $i$ and in box $j$. On the other hand, if $k ne ell$, then the events corresponding to $Y_k^(i)$ and $Y_ell^(j)$ are independent since the placement of balls $k$ and $ell$ are independent, which implies that $Y_k^(i)$ and $Y_ell^(j)$ are independent random variables. Therefore, in this case,
$$mathbbE(Y_k^(i) Y_ell^(j)) = mathbbE(Y_k^(i)) mathbbE(Y_ell^(j)) = frac1r cdot frac1r.$$
In summary, if $i ne j$, then
$$mathbbE(X_i X_j) = sum_k=1^n sum_ell=1^n delta_k ne ell cdot frac1r^2 = fracn(n-1)r^2$$
where $delta_k ne ell$ represents the indicator value which is 1 when $k ne ell$ and 0 when $k = ell$.



For the case $i = j$, I will leave the similar computation of $mathbbE(X_i^2)$ to you, with just the hint that the difference is in the expected value of $mathbbE(Y_k^(i) Y_ell^(j))$ for the case $k = ell$.






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    I decided to add my solution to part two, using your notation, to your answer to avoid having an answer split between your part and a part I would post separately. Feel free to edit it more to your liking, or even revert the addition if you prefer.
    $endgroup$
    – Daniel Schepler
    Apr 11 at 23:21










  • $begingroup$
    @DanielSchepler: Looks good, thank you!
    $endgroup$
    – VHarisop
    Apr 12 at 16:27


















0












$begingroup$

Think of placing the ball in box "$i$" as success and not placing it as a failure.



This situation can be represented using the Hypergeometric Distribution.
$$
P(X=k) = fracK choose k N- Kchoose n - kN choose n.
$$



$N$ is the population size (number of boxes $r$)



$K$ is the number of success states in the population (just $1$ because the success is defined as placing the ball in box "$i$".)



$n$ is the number of draws (the number of balls $n$).



$k$ is the number of observed successes (the number of balls in box "$i$").



The expectation of the Hypergeometric Distribution is $nfracKN$, hence the mean of your variable
$$E[X_i]=nfrac1r=fracnr$$






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3184022%2fcomputing-the-expectation-of-the-number-of-balls-in-a-box%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Since there are $r$ boxes and $n$ balls, and each ball is placed in a box with equal probability, we have:



    $$ mathbbE[X_i] = fracnr $$



    Now, we would like to know what is $mathbbE[X_i X_j] $.



    We begin by making the following observation:



    $$X_i = n - sum_jneq iX_j $$



    Which gives us:



    $$ X_isum_jneq iX_j = nX_i - X_i^2$$



    Now, fix $i$ (we can do this because of the symmetry in the question), and thus we have:



    beginalignmathbbE[X_i X_j] &= frac1rBig(mathbbE[X_i sum_jneq i X_j] + mathbbE[X_i^2]Big) \
    &= frac1r mathbbE[nX_i] \
    &= fracn^2r^2
    endalign






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      If indeed $E(X_i X_j) = E(X_i) E(X_j)$ for $i in j$ then that implies zero correlation. I would expect a bit of negative correlation. (And indeed, my preliminary calculation based on the decomposition from VHarisop's answer seems to result in $E(X_i X_j) = fracn(n-1)r^2$ for $i ne j$ and $E(X_i^2) = fracnr + fracn(n-1)r^2$.)
      $endgroup$
      – Daniel Schepler
      Apr 11 at 22:48











    • $begingroup$
      Yeah, it seemed a little strange to me initially, but its consistent with your results btw: $frac1r[(r-1)E(X_iX_j) + E(X_i^2)] = fracn^2r^2$
      $endgroup$
      – Sean Lee
      Apr 11 at 23:01







    • 1




      $begingroup$
      I've now expanded VHarisop's answer with my calculations for part two of the question.
      $endgroup$
      – Daniel Schepler
      Apr 11 at 23:23















    2












    $begingroup$

    Since there are $r$ boxes and $n$ balls, and each ball is placed in a box with equal probability, we have:



    $$ mathbbE[X_i] = fracnr $$



    Now, we would like to know what is $mathbbE[X_i X_j] $.



    We begin by making the following observation:



    $$X_i = n - sum_jneq iX_j $$



    Which gives us:



    $$ X_isum_jneq iX_j = nX_i - X_i^2$$



    Now, fix $i$ (we can do this because of the symmetry in the question), and thus we have:



    beginalignmathbbE[X_i X_j] &= frac1rBig(mathbbE[X_i sum_jneq i X_j] + mathbbE[X_i^2]Big) \
    &= frac1r mathbbE[nX_i] \
    &= fracn^2r^2
    endalign






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      If indeed $E(X_i X_j) = E(X_i) E(X_j)$ for $i in j$ then that implies zero correlation. I would expect a bit of negative correlation. (And indeed, my preliminary calculation based on the decomposition from VHarisop's answer seems to result in $E(X_i X_j) = fracn(n-1)r^2$ for $i ne j$ and $E(X_i^2) = fracnr + fracn(n-1)r^2$.)
      $endgroup$
      – Daniel Schepler
      Apr 11 at 22:48











    • $begingroup$
      Yeah, it seemed a little strange to me initially, but its consistent with your results btw: $frac1r[(r-1)E(X_iX_j) + E(X_i^2)] = fracn^2r^2$
      $endgroup$
      – Sean Lee
      Apr 11 at 23:01







    • 1




      $begingroup$
      I've now expanded VHarisop's answer with my calculations for part two of the question.
      $endgroup$
      – Daniel Schepler
      Apr 11 at 23:23













    2












    2








    2





    $begingroup$

    Since there are $r$ boxes and $n$ balls, and each ball is placed in a box with equal probability, we have:



    $$ mathbbE[X_i] = fracnr $$



    Now, we would like to know what is $mathbbE[X_i X_j] $.



    We begin by making the following observation:



    $$X_i = n - sum_jneq iX_j $$



    Which gives us:



    $$ X_isum_jneq iX_j = nX_i - X_i^2$$



    Now, fix $i$ (we can do this because of the symmetry in the question), and thus we have:



    beginalignmathbbE[X_i X_j] &= frac1rBig(mathbbE[X_i sum_jneq i X_j] + mathbbE[X_i^2]Big) \
    &= frac1r mathbbE[nX_i] \
    &= fracn^2r^2
    endalign






    share|cite|improve this answer











    $endgroup$



    Since there are $r$ boxes and $n$ balls, and each ball is placed in a box with equal probability, we have:



    $$ mathbbE[X_i] = fracnr $$



    Now, we would like to know what is $mathbbE[X_i X_j] $.



    We begin by making the following observation:



    $$X_i = n - sum_jneq iX_j $$



    Which gives us:



    $$ X_isum_jneq iX_j = nX_i - X_i^2$$



    Now, fix $i$ (we can do this because of the symmetry in the question), and thus we have:



    beginalignmathbbE[X_i X_j] &= frac1rBig(mathbbE[X_i sum_jneq i X_j] + mathbbE[X_i^2]Big) \
    &= frac1r mathbbE[nX_i] \
    &= fracn^2r^2
    endalign







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Apr 11 at 18:19

























    answered Apr 11 at 18:01









    Sean LeeSean Lee

    830214




    830214







    • 1




      $begingroup$
      If indeed $E(X_i X_j) = E(X_i) E(X_j)$ for $i in j$ then that implies zero correlation. I would expect a bit of negative correlation. (And indeed, my preliminary calculation based on the decomposition from VHarisop's answer seems to result in $E(X_i X_j) = fracn(n-1)r^2$ for $i ne j$ and $E(X_i^2) = fracnr + fracn(n-1)r^2$.)
      $endgroup$
      – Daniel Schepler
      Apr 11 at 22:48











    • $begingroup$
      Yeah, it seemed a little strange to me initially, but its consistent with your results btw: $frac1r[(r-1)E(X_iX_j) + E(X_i^2)] = fracn^2r^2$
      $endgroup$
      – Sean Lee
      Apr 11 at 23:01







    • 1




      $begingroup$
      I've now expanded VHarisop's answer with my calculations for part two of the question.
      $endgroup$
      – Daniel Schepler
      Apr 11 at 23:23












    • 1




      $begingroup$
      If indeed $E(X_i X_j) = E(X_i) E(X_j)$ for $i in j$ then that implies zero correlation. I would expect a bit of negative correlation. (And indeed, my preliminary calculation based on the decomposition from VHarisop's answer seems to result in $E(X_i X_j) = fracn(n-1)r^2$ for $i ne j$ and $E(X_i^2) = fracnr + fracn(n-1)r^2$.)
      $endgroup$
      – Daniel Schepler
      Apr 11 at 22:48











    • $begingroup$
      Yeah, it seemed a little strange to me initially, but its consistent with your results btw: $frac1r[(r-1)E(X_iX_j) + E(X_i^2)] = fracn^2r^2$
      $endgroup$
      – Sean Lee
      Apr 11 at 23:01







    • 1




      $begingroup$
      I've now expanded VHarisop's answer with my calculations for part two of the question.
      $endgroup$
      – Daniel Schepler
      Apr 11 at 23:23







    1




    1




    $begingroup$
    If indeed $E(X_i X_j) = E(X_i) E(X_j)$ for $i in j$ then that implies zero correlation. I would expect a bit of negative correlation. (And indeed, my preliminary calculation based on the decomposition from VHarisop's answer seems to result in $E(X_i X_j) = fracn(n-1)r^2$ for $i ne j$ and $E(X_i^2) = fracnr + fracn(n-1)r^2$.)
    $endgroup$
    – Daniel Schepler
    Apr 11 at 22:48





    $begingroup$
    If indeed $E(X_i X_j) = E(X_i) E(X_j)$ for $i in j$ then that implies zero correlation. I would expect a bit of negative correlation. (And indeed, my preliminary calculation based on the decomposition from VHarisop's answer seems to result in $E(X_i X_j) = fracn(n-1)r^2$ for $i ne j$ and $E(X_i^2) = fracnr + fracn(n-1)r^2$.)
    $endgroup$
    – Daniel Schepler
    Apr 11 at 22:48













    $begingroup$
    Yeah, it seemed a little strange to me initially, but its consistent with your results btw: $frac1r[(r-1)E(X_iX_j) + E(X_i^2)] = fracn^2r^2$
    $endgroup$
    – Sean Lee
    Apr 11 at 23:01





    $begingroup$
    Yeah, it seemed a little strange to me initially, but its consistent with your results btw: $frac1r[(r-1)E(X_iX_j) + E(X_i^2)] = fracn^2r^2$
    $endgroup$
    – Sean Lee
    Apr 11 at 23:01





    1




    1




    $begingroup$
    I've now expanded VHarisop's answer with my calculations for part two of the question.
    $endgroup$
    – Daniel Schepler
    Apr 11 at 23:23




    $begingroup$
    I've now expanded VHarisop's answer with my calculations for part two of the question.
    $endgroup$
    – Daniel Schepler
    Apr 11 at 23:23











    4












    $begingroup$

    For the first part, you can use linearity of expectation to compute $mathbbE[X_i]$.
    Specifically, you know that for a fixed box, the probability of putting a ball in it
    is $frac1r$. Let



    $$
    Y_k^(i) = begincases
    1 &, text if ball $k$ was placed in box $i$ \
    0 &, text otherwise
    endcases,
    $$

    which satisfies $mathbbE[Y_k^(i)] = mathbbP(Y_k^(i) = 1) = frac1r.$
    Then you can write



    $$
    X_i = sum_j=1^n Y_j^(i) Rightarrow mathbbEX_i = sum_j=1^n frac1r = fracnr.
    $$




    For the second part, you can proceed similarly: $X_i = sum_k=1^n Y_k^(i)$ and $X_j = sum_ell=1^n Y_ell^(j)$, so:
    $$
    X_i X_j = sum_k=1^n sum_ell=1^n Y_k^(i) Y_ell^(j) implies
    mathbbE(X_i X_j) = sum_k=1^n sum_ell=1^n mathbbE(Y_k^(i) Y_ell^(j)).
    $$

    We will first treat the case where $i ne j$. Then, for each term in the sum such that $k = ell$, we must have $Y_k^(i) Y_ell^(j) = Y_k^(i) Y_k^(j) = 0$ since it impossible for ball $k$ to be placed both in box $i$ and in box $j$. On the other hand, if $k ne ell$, then the events corresponding to $Y_k^(i)$ and $Y_ell^(j)$ are independent since the placement of balls $k$ and $ell$ are independent, which implies that $Y_k^(i)$ and $Y_ell^(j)$ are independent random variables. Therefore, in this case,
    $$mathbbE(Y_k^(i) Y_ell^(j)) = mathbbE(Y_k^(i)) mathbbE(Y_ell^(j)) = frac1r cdot frac1r.$$
    In summary, if $i ne j$, then
    $$mathbbE(X_i X_j) = sum_k=1^n sum_ell=1^n delta_k ne ell cdot frac1r^2 = fracn(n-1)r^2$$
    where $delta_k ne ell$ represents the indicator value which is 1 when $k ne ell$ and 0 when $k = ell$.



    For the case $i = j$, I will leave the similar computation of $mathbbE(X_i^2)$ to you, with just the hint that the difference is in the expected value of $mathbbE(Y_k^(i) Y_ell^(j))$ for the case $k = ell$.






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      I decided to add my solution to part two, using your notation, to your answer to avoid having an answer split between your part and a part I would post separately. Feel free to edit it more to your liking, or even revert the addition if you prefer.
      $endgroup$
      – Daniel Schepler
      Apr 11 at 23:21










    • $begingroup$
      @DanielSchepler: Looks good, thank you!
      $endgroup$
      – VHarisop
      Apr 12 at 16:27















    4












    $begingroup$

    For the first part, you can use linearity of expectation to compute $mathbbE[X_i]$.
    Specifically, you know that for a fixed box, the probability of putting a ball in it
    is $frac1r$. Let



    $$
    Y_k^(i) = begincases
    1 &, text if ball $k$ was placed in box $i$ \
    0 &, text otherwise
    endcases,
    $$

    which satisfies $mathbbE[Y_k^(i)] = mathbbP(Y_k^(i) = 1) = frac1r.$
    Then you can write



    $$
    X_i = sum_j=1^n Y_j^(i) Rightarrow mathbbEX_i = sum_j=1^n frac1r = fracnr.
    $$




    For the second part, you can proceed similarly: $X_i = sum_k=1^n Y_k^(i)$ and $X_j = sum_ell=1^n Y_ell^(j)$, so:
    $$
    X_i X_j = sum_k=1^n sum_ell=1^n Y_k^(i) Y_ell^(j) implies
    mathbbE(X_i X_j) = sum_k=1^n sum_ell=1^n mathbbE(Y_k^(i) Y_ell^(j)).
    $$

    We will first treat the case where $i ne j$. Then, for each term in the sum such that $k = ell$, we must have $Y_k^(i) Y_ell^(j) = Y_k^(i) Y_k^(j) = 0$ since it impossible for ball $k$ to be placed both in box $i$ and in box $j$. On the other hand, if $k ne ell$, then the events corresponding to $Y_k^(i)$ and $Y_ell^(j)$ are independent since the placement of balls $k$ and $ell$ are independent, which implies that $Y_k^(i)$ and $Y_ell^(j)$ are independent random variables. Therefore, in this case,
    $$mathbbE(Y_k^(i) Y_ell^(j)) = mathbbE(Y_k^(i)) mathbbE(Y_ell^(j)) = frac1r cdot frac1r.$$
    In summary, if $i ne j$, then
    $$mathbbE(X_i X_j) = sum_k=1^n sum_ell=1^n delta_k ne ell cdot frac1r^2 = fracn(n-1)r^2$$
    where $delta_k ne ell$ represents the indicator value which is 1 when $k ne ell$ and 0 when $k = ell$.



    For the case $i = j$, I will leave the similar computation of $mathbbE(X_i^2)$ to you, with just the hint that the difference is in the expected value of $mathbbE(Y_k^(i) Y_ell^(j))$ for the case $k = ell$.






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      I decided to add my solution to part two, using your notation, to your answer to avoid having an answer split between your part and a part I would post separately. Feel free to edit it more to your liking, or even revert the addition if you prefer.
      $endgroup$
      – Daniel Schepler
      Apr 11 at 23:21










    • $begingroup$
      @DanielSchepler: Looks good, thank you!
      $endgroup$
      – VHarisop
      Apr 12 at 16:27













    4












    4








    4





    $begingroup$

    For the first part, you can use linearity of expectation to compute $mathbbE[X_i]$.
    Specifically, you know that for a fixed box, the probability of putting a ball in it
    is $frac1r$. Let



    $$
    Y_k^(i) = begincases
    1 &, text if ball $k$ was placed in box $i$ \
    0 &, text otherwise
    endcases,
    $$

    which satisfies $mathbbE[Y_k^(i)] = mathbbP(Y_k^(i) = 1) = frac1r.$
    Then you can write



    $$
    X_i = sum_j=1^n Y_j^(i) Rightarrow mathbbEX_i = sum_j=1^n frac1r = fracnr.
    $$




    For the second part, you can proceed similarly: $X_i = sum_k=1^n Y_k^(i)$ and $X_j = sum_ell=1^n Y_ell^(j)$, so:
    $$
    X_i X_j = sum_k=1^n sum_ell=1^n Y_k^(i) Y_ell^(j) implies
    mathbbE(X_i X_j) = sum_k=1^n sum_ell=1^n mathbbE(Y_k^(i) Y_ell^(j)).
    $$

    We will first treat the case where $i ne j$. Then, for each term in the sum such that $k = ell$, we must have $Y_k^(i) Y_ell^(j) = Y_k^(i) Y_k^(j) = 0$ since it impossible for ball $k$ to be placed both in box $i$ and in box $j$. On the other hand, if $k ne ell$, then the events corresponding to $Y_k^(i)$ and $Y_ell^(j)$ are independent since the placement of balls $k$ and $ell$ are independent, which implies that $Y_k^(i)$ and $Y_ell^(j)$ are independent random variables. Therefore, in this case,
    $$mathbbE(Y_k^(i) Y_ell^(j)) = mathbbE(Y_k^(i)) mathbbE(Y_ell^(j)) = frac1r cdot frac1r.$$
    In summary, if $i ne j$, then
    $$mathbbE(X_i X_j) = sum_k=1^n sum_ell=1^n delta_k ne ell cdot frac1r^2 = fracn(n-1)r^2$$
    where $delta_k ne ell$ represents the indicator value which is 1 when $k ne ell$ and 0 when $k = ell$.



    For the case $i = j$, I will leave the similar computation of $mathbbE(X_i^2)$ to you, with just the hint that the difference is in the expected value of $mathbbE(Y_k^(i) Y_ell^(j))$ for the case $k = ell$.






    share|cite|improve this answer











    $endgroup$



    For the first part, you can use linearity of expectation to compute $mathbbE[X_i]$.
    Specifically, you know that for a fixed box, the probability of putting a ball in it
    is $frac1r$. Let



    $$
    Y_k^(i) = begincases
    1 &, text if ball $k$ was placed in box $i$ \
    0 &, text otherwise
    endcases,
    $$

    which satisfies $mathbbE[Y_k^(i)] = mathbbP(Y_k^(i) = 1) = frac1r.$
    Then you can write



    $$
    X_i = sum_j=1^n Y_j^(i) Rightarrow mathbbEX_i = sum_j=1^n frac1r = fracnr.
    $$




    For the second part, you can proceed similarly: $X_i = sum_k=1^n Y_k^(i)$ and $X_j = sum_ell=1^n Y_ell^(j)$, so:
    $$
    X_i X_j = sum_k=1^n sum_ell=1^n Y_k^(i) Y_ell^(j) implies
    mathbbE(X_i X_j) = sum_k=1^n sum_ell=1^n mathbbE(Y_k^(i) Y_ell^(j)).
    $$

    We will first treat the case where $i ne j$. Then, for each term in the sum such that $k = ell$, we must have $Y_k^(i) Y_ell^(j) = Y_k^(i) Y_k^(j) = 0$ since it impossible for ball $k$ to be placed both in box $i$ and in box $j$. On the other hand, if $k ne ell$, then the events corresponding to $Y_k^(i)$ and $Y_ell^(j)$ are independent since the placement of balls $k$ and $ell$ are independent, which implies that $Y_k^(i)$ and $Y_ell^(j)$ are independent random variables. Therefore, in this case,
    $$mathbbE(Y_k^(i) Y_ell^(j)) = mathbbE(Y_k^(i)) mathbbE(Y_ell^(j)) = frac1r cdot frac1r.$$
    In summary, if $i ne j$, then
    $$mathbbE(X_i X_j) = sum_k=1^n sum_ell=1^n delta_k ne ell cdot frac1r^2 = fracn(n-1)r^2$$
    where $delta_k ne ell$ represents the indicator value which is 1 when $k ne ell$ and 0 when $k = ell$.



    For the case $i = j$, I will leave the similar computation of $mathbbE(X_i^2)$ to you, with just the hint that the difference is in the expected value of $mathbbE(Y_k^(i) Y_ell^(j))$ for the case $k = ell$.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Apr 11 at 23:19









    Daniel Schepler

    9,3341821




    9,3341821










    answered Apr 11 at 17:48









    VHarisopVHarisop

    1,228421




    1,228421







    • 1




      $begingroup$
      I decided to add my solution to part two, using your notation, to your answer to avoid having an answer split between your part and a part I would post separately. Feel free to edit it more to your liking, or even revert the addition if you prefer.
      $endgroup$
      – Daniel Schepler
      Apr 11 at 23:21










    • $begingroup$
      @DanielSchepler: Looks good, thank you!
      $endgroup$
      – VHarisop
      Apr 12 at 16:27












    • 1




      $begingroup$
      I decided to add my solution to part two, using your notation, to your answer to avoid having an answer split between your part and a part I would post separately. Feel free to edit it more to your liking, or even revert the addition if you prefer.
      $endgroup$
      – Daniel Schepler
      Apr 11 at 23:21










    • $begingroup$
      @DanielSchepler: Looks good, thank you!
      $endgroup$
      – VHarisop
      Apr 12 at 16:27







    1




    1




    $begingroup$
    I decided to add my solution to part two, using your notation, to your answer to avoid having an answer split between your part and a part I would post separately. Feel free to edit it more to your liking, or even revert the addition if you prefer.
    $endgroup$
    – Daniel Schepler
    Apr 11 at 23:21




    $begingroup$
    I decided to add my solution to part two, using your notation, to your answer to avoid having an answer split between your part and a part I would post separately. Feel free to edit it more to your liking, or even revert the addition if you prefer.
    $endgroup$
    – Daniel Schepler
    Apr 11 at 23:21












    $begingroup$
    @DanielSchepler: Looks good, thank you!
    $endgroup$
    – VHarisop
    Apr 12 at 16:27




    $begingroup$
    @DanielSchepler: Looks good, thank you!
    $endgroup$
    – VHarisop
    Apr 12 at 16:27











    0












    $begingroup$

    Think of placing the ball in box "$i$" as success and not placing it as a failure.



    This situation can be represented using the Hypergeometric Distribution.
    $$
    P(X=k) = fracK choose k N- Kchoose n - kN choose n.
    $$



    $N$ is the population size (number of boxes $r$)



    $K$ is the number of success states in the population (just $1$ because the success is defined as placing the ball in box "$i$".)



    $n$ is the number of draws (the number of balls $n$).



    $k$ is the number of observed successes (the number of balls in box "$i$").



    The expectation of the Hypergeometric Distribution is $nfracKN$, hence the mean of your variable
    $$E[X_i]=nfrac1r=fracnr$$






    share|cite|improve this answer









    $endgroup$

















      0












      $begingroup$

      Think of placing the ball in box "$i$" as success and not placing it as a failure.



      This situation can be represented using the Hypergeometric Distribution.
      $$
      P(X=k) = fracK choose k N- Kchoose n - kN choose n.
      $$



      $N$ is the population size (number of boxes $r$)



      $K$ is the number of success states in the population (just $1$ because the success is defined as placing the ball in box "$i$".)



      $n$ is the number of draws (the number of balls $n$).



      $k$ is the number of observed successes (the number of balls in box "$i$").



      The expectation of the Hypergeometric Distribution is $nfracKN$, hence the mean of your variable
      $$E[X_i]=nfrac1r=fracnr$$






      share|cite|improve this answer









      $endgroup$















        0












        0








        0





        $begingroup$

        Think of placing the ball in box "$i$" as success and not placing it as a failure.



        This situation can be represented using the Hypergeometric Distribution.
        $$
        P(X=k) = fracK choose k N- Kchoose n - kN choose n.
        $$



        $N$ is the population size (number of boxes $r$)



        $K$ is the number of success states in the population (just $1$ because the success is defined as placing the ball in box "$i$".)



        $n$ is the number of draws (the number of balls $n$).



        $k$ is the number of observed successes (the number of balls in box "$i$").



        The expectation of the Hypergeometric Distribution is $nfracKN$, hence the mean of your variable
        $$E[X_i]=nfrac1r=fracnr$$






        share|cite|improve this answer









        $endgroup$



        Think of placing the ball in box "$i$" as success and not placing it as a failure.



        This situation can be represented using the Hypergeometric Distribution.
        $$
        P(X=k) = fracK choose k N- Kchoose n - kN choose n.
        $$



        $N$ is the population size (number of boxes $r$)



        $K$ is the number of success states in the population (just $1$ because the success is defined as placing the ball in box "$i$".)



        $n$ is the number of draws (the number of balls $n$).



        $k$ is the number of observed successes (the number of balls in box "$i$").



        The expectation of the Hypergeometric Distribution is $nfracKN$, hence the mean of your variable
        $$E[X_i]=nfrac1r=fracnr$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Apr 11 at 18:00









        RScrlliRScrlli

        763114




        763114



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3184022%2fcomputing-the-expectation-of-the-number-of-balls-in-a-box%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Àrd-bhaile Cathair chruinne/Baile mòr cruinne | Artagailean ceangailte | Clàr-taice na seòladaireachd

            Cannot Extend partition with GParted The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Community Moderator Election ResultsCan't increase partition size with GParted?GParted doesn't recognize the unallocated space after my current partitionWhat is the best way to add unallocated space located before to Ubuntu 12.04 partition with GParted live?I can't figure out how to extend my Arch home partition into free spaceGparted Linux Mint 18.1 issueTrying to extend but swap partition is showing as Unknown in Gparted, shows proper from fdiskRearrange partitions in gparted to extend a partitionUnable to extend partition even though unallocated space is next to it using GPartedAllocate free space to root partitiongparted: how to merge unallocated space with a partition

            대한민국 목차 국명 지리 역사 정치 국방 경제 사회 문화 국제 순위 관련 항목 각주 외부 링크 둘러보기 메뉴북위 37° 34′ 08″ 동경 126° 58′ 36″ / 북위 37.568889° 동경 126.976667°  / 37.568889; 126.976667ehThe Korean Repository문단을 편집문단을 편집추가해Clarkson PLC 사Report for Selected Countries and Subjects-Korea“Human Development Index and its components: P.198”“http://www.law.go.kr/%EB%B2%95%EB%A0%B9/%EB%8C%80%ED%95%9C%EB%AF%BC%EA%B5%AD%EA%B5%AD%EA%B8%B0%EB%B2%95”"한국은 국제법상 한반도 유일 합법정부 아니다" - 오마이뉴스 모바일Report for Selected Countries and Subjects: South Korea격동의 역사와 함께한 조선일보 90년 : 조선일보 인수해 혁신시킨 신석우, 임시정부 때는 '대한민국' 국호(國號) 정해《우리가 몰랐던 우리 역사: 나라 이름의 비밀을 찾아가는 역사 여행》“남북 공식호칭 ‘남한’‘북한’으로 쓴다”“Corea 대 Korea, 누가 이긴 거야?”국내기후자료 - 한국[김대중 前 대통령 서거] 과감한 구조개혁 'DJ노믹스'로 최단기간 환란극복 :: 네이버 뉴스“이라크 "韓-쿠르드 유전개발 MOU 승인 안해"(종합)”“해외 우리국민 추방사례 43%가 일본”차기전차 K2'흑표'의 세계 최고 전력 분석, 쿠키뉴스 엄기영, 2007-03-02두산인프라, 헬기잡는 장갑차 'K21'...내년부터 공급, 고뉴스 이대준, 2008-10-30과거 내용 찾기mk 뉴스 - 구매력 기준으로 보면 한국 1인당 소득 3만弗과거 내용 찾기"The N-11: More Than an Acronym"Archived조선일보 최우석, 2008-11-01Global 500 2008: Countries - South Korea“몇년째 '시한폭탄'... 가계부채, 올해는 터질까”가구당 부채 5000만원 처음 넘어서“‘빚’으로 내몰리는 사회.. 위기의 가계대출”“[경제365] 공공부문 부채 급증…800조 육박”“"소득 양극화 다소 완화...불평등은 여전"”“공정사회·공생발전 한참 멀었네”iSuppli,08年2QのDRAMシェア・ランキングを発表(08/8/11)South Korea dominates shipbuilding industry | Stock Market News & Stocks to Watch from StraightStocks한국 자동차 생산, 3년 연속 세계 5위자동차수출 '현대-삼성 웃고 기아-대우-쌍용은 울고' 과거 내용 찾기동반성장위 창립 1주년 맞아Archived"중기적합 3개업종 합의 무시한 채 선정"李대통령, 사업 무분별 확장 소상공인 생계 위협 질타삼성-LG, 서민업종인 빵·분식사업 잇따라 철수상생은 뒷전…SSM ‘몸집 불리기’ 혈안Archived“경부고속도에 '아시안하이웨이' 표지판”'철의 실크로드' 앞서 '말(言)의 실크로드'부터, 프레시안 정창현, 2008-10-01“'서울 지하철은 안전한가?'”“서울시 “올해 안에 모든 지하철역 스크린도어 설치””“부산지하철 1,2호선 승강장 안전펜스 설치 완료”“전교조, 정부 노조 통계서 처음 빠져”“[Weekly BIZ] 도요타 '제로 이사회'가 리콜 사태 불러들였다”“S Korea slams high tuition costs”““정치가 여론 양극화 부채질… 합리주의 절실””“〈"`촛불집회'는 민주주의의 질적 변화 상징"〉”““촛불집회가 민주주의 왜곡 초래””“국민 65%, "한국 노사관계 대립적"”“한국 국가경쟁력 27위‥노사관계 '꼴찌'”“제대로 형성되지 않은 대한민국 이념지형”“[신년기획-갈등의 시대] 갈등지수 OECD 4위…사회적 손실 GDP 27% 무려 300조”“2012 총선-대선의 키워드는 '국민과 소통'”“한국 삶의 질 27위, 2000년과 2008년 연속 하위권 머물러”“[해피 코리아] 행복점수 68점…해외 평가선 '낙제점'”“한국 어린이·청소년 행복지수 3년 연속 OECD ‘꼴찌’”“한국 이혼율 OECD중 8위”“[통계청] 한국 이혼율 OECD 4위”“오피니언 [이렇게 생각한다] `부부의 날` 에 돌아본 이혼율 1위 한국”“Suicide Rates by Country, Global Health Observatory Data Repository.”“1. 또 다른 차별”“오피니언 [편집자에게] '왕따'와 '패거리 정치' 심리는 닮은꼴”“[미래한국리포트] 무한경쟁에 빠진 대한민국”“대학생 98% "외모가 경쟁력이라는 말 동의"”“특급호텔 웨딩·200만원대 유모차… "남보다 더…" 호화病, 고질병 됐다”“[스트레스 공화국] ① 경쟁사회, 스트레스 쌓인다”““매일 30여명 자살 한국, 의사보다 무속인에…””“"자살 부르는 '우울증', 환자 중 85% 치료 안 받아"”“정신병원을 가다”“대한민국도 ‘묻지마 범죄’,안전지대 아니다”“유엔 "학생 '성적 지향'에 따른 차별 금지하라"”“유엔아동권리위원회 보고서 및 번역본 원문”“고졸 성공스토리 담은 '제빵왕 김탁구' 드라마 나온다”“‘빛 좋은 개살구’ 고졸 취업…실습 대신 착취”원본 문서“정신건강, 사회적 편견부터 고쳐드립니다”‘소통’과 ‘행복’에 목 마른 사회가 잠들어 있던 ‘심리학’ 깨웠다“[포토] 사유리-곽금주 교수의 유쾌한 심리상담”“"올해 한국인 평균 영화관람횟수 세계 1위"(종합)”“[게임연중기획] 게임은 문화다-여가활동 1순위 게임”“영화속 ‘영어 지상주의’ …“왠지 씁쓸한데””“2월 `신문 부수 인증기관` 지정..방송법 후속작업”“무료신문 성장동력 ‘차별성’과 ‘갈등해소’”대한민국 국회 법률지식정보시스템"Pew Research Center's Religion & Public Life Project: South Korea"“amp;vwcd=MT_ZTITLE&path=인구·가구%20>%20인구총조사%20>%20인구부문%20>%20 총조사인구(2005)%20>%20전수부문&oper_YN=Y&item=&keyword=종교별%20인구& amp;lang_mode=kor&list_id= 2005년 통계청 인구 총조사”원본 문서“한국인이 좋아하는 취미와 운동 (2004-2009)”“한국인이 좋아하는 취미와 운동 (2004-2014)”Archived“한국, `부분적 언론자유국' 강등〈프리덤하우스〉”“국경없는기자회 "한국, 인터넷감시 대상국"”“한국, 조선산업 1위 유지(S. Korea Stays Top Shipbuilding Nation) RZD-Partner Portal”원본 문서“한국, 4년 만에 ‘선박건조 1위’”“옛 마산시,인터넷속도 세계 1위”“"한국 초고속 인터넷망 세계1위"”“인터넷·휴대폰 요금, 외국보다 훨씬 비싸”“한국 관세행정 6년 연속 세계 '1위'”“한국 교통사고 사망자 수 OECD 회원국 중 2위”“결핵 후진국' 한국, 환자가 급증한 이유는”“수술은 신중해야… 자칫하면 생명 위협”대한민국분류대한민국의 지도대한민국 정부대표 다국어포털대한민국 전자정부대한민국 국회한국방송공사about korea and information korea브리태니커 백과사전(한국편)론리플래닛의 정보(한국편)CIA의 세계 정보(한국편)마리암 부디아 (Mariam Budia),『한국: 하늘이 내린 한 폭의 그림』, 서울: 트랜스라틴 19호 (2012년 3월)대한민국ehehehehehehehehehehehehehehWorldCat132441370n791268020000 0001 2308 81034078029-6026373548cb11863345f(데이터)00573706ge128495