Language involving irrational number is not a CFLHow to prove that a language is not regular?Why is $L= 0^n 1^n $ not regular language?Prove that the language of unary not-prime numbers satisfies the Pumping LemmaAlgorithm to test whether a language is context-freeUsing the Pumping Lemma to show that the language $a^n b a^n$ is not regularA non-regular language satisfying the pumping lemmaProving non-regularity of $u u^R v$?Prove using pumping free lemma for context-free languagesProve that $L_1 = , 0^m 1^k 2^n ,vert, lvert m - n rvert = k ,$ is not regular using Pumping lemmaPumping lemma for context-free languages - Am I doing it right?
Why is the Sun approximated as a black body at ~ 5800 K?
Is there a way to have vectors outlined in a Vector Plot?
Why is the "ls" command showing permissions of files in a FAT32 partition?
Pre-mixing cryogenic fuels and using only one fuel tank
Has the laser at Magurele, Romania reached a tenth of the Sun's power?
Short story about a deaf man, who cuts people tongues
The Digit Triangles
What is going on with gets(stdin) on the site coderbyte?
Why Shazam when there is already Superman?
awk assign to multiple variables at once
Giving feedback to someone without sounding prejudiced
Mimic lecturing on blackboard, facing audience
Is there a RAID 0 Equivalent for RAM?
Are Captain Marvel's powers affected by Thanos breaking the Tesseract and claiming the stone?
Can I say "fingers" when referring to toes?
Delete multiple columns using awk or sed
Does the Linux kernel need a file system to run?
How would you translate "more" for use as an interface button?
Why do some congregations only make noise at certain occasions of Haman?
How do I fix the group tension caused by my character stealing and possibly killing without provocation?
What's the name of the logical fallacy where a debater extends a statement far beyond the original statement to make it true?
What kind of floor tile is this?
What fields between the rationals and the reals allow a good notion of 2D distance?
What is Cash Advance APR?
Language involving irrational number is not a CFL
How to prove that a language is not regular?Why is $L= 0^n 1^n $ not regular language?Prove that the language of unary not-prime numbers satisfies the Pumping LemmaAlgorithm to test whether a language is context-freeUsing the Pumping Lemma to show that the language $a^n b a^n$ is not regularA non-regular language satisfying the pumping lemmaProving non-regularity of $u u^R v$?Prove using pumping free lemma for context-free languagesProve that $L_1 = , 0^m 1^k 2^n ,vert, lvert m - n rvert = k ,$ is not regular using Pumping lemmaPumping lemma for context-free languages - Am I doing it right?
$begingroup$
I am working through a hard exercise in a textbook, and I just can't figure out how to proceed. Here is the problem. Suppose we have the language $L = a^ib^j: i leq j gamma, igeq 0, jgeq 1$ where $gamma$ is some irrational number. How would I prove that $L$ is not a context-free language?
In the case when $gamma$ is rational, it's pretty easy to construct a grammar that accepts the language. But because $gamma$ is irrational, I don't really know what to do. It doesn't look like any of the pumping lemmas would work here. Maybe Parikh's theorem would work here, since it would intuitively seem like this language doesn't have an accompanying semilinear Parikh image.
This exercise is from "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit, Exercise 25 of Chapter 4.
I would really appreciate any help, or nudges in the right direction. Thank you!
formal-languages automata context-free
$endgroup$
add a comment |
$begingroup$
I am working through a hard exercise in a textbook, and I just can't figure out how to proceed. Here is the problem. Suppose we have the language $L = a^ib^j: i leq j gamma, igeq 0, jgeq 1$ where $gamma$ is some irrational number. How would I prove that $L$ is not a context-free language?
In the case when $gamma$ is rational, it's pretty easy to construct a grammar that accepts the language. But because $gamma$ is irrational, I don't really know what to do. It doesn't look like any of the pumping lemmas would work here. Maybe Parikh's theorem would work here, since it would intuitively seem like this language doesn't have an accompanying semilinear Parikh image.
This exercise is from "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit, Exercise 25 of Chapter 4.
I would really appreciate any help, or nudges in the right direction. Thank you!
formal-languages automata context-free
$endgroup$
$begingroup$
Have you tried applying Parikh’s theorem?
$endgroup$
– Yuval Filmus
yesterday
$begingroup$
Why not show that it’s not semilinear directly? Use the definition.
$endgroup$
– Yuval Filmus
yesterday
4
$begingroup$
Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
$endgroup$
– Hendrik Jan
yesterday
$begingroup$
@HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
$endgroup$
– user101859
yesterday
$begingroup$
I appreciate what you were trying to do and your good intentions, but please don't destroy the question by editing it to hide the question (even for a few days). Thank you. P.S. Thank you for crediting the source of the problem!
$endgroup$
– D.W.♦
yesterday
add a comment |
$begingroup$
I am working through a hard exercise in a textbook, and I just can't figure out how to proceed. Here is the problem. Suppose we have the language $L = a^ib^j: i leq j gamma, igeq 0, jgeq 1$ where $gamma$ is some irrational number. How would I prove that $L$ is not a context-free language?
In the case when $gamma$ is rational, it's pretty easy to construct a grammar that accepts the language. But because $gamma$ is irrational, I don't really know what to do. It doesn't look like any of the pumping lemmas would work here. Maybe Parikh's theorem would work here, since it would intuitively seem like this language doesn't have an accompanying semilinear Parikh image.
This exercise is from "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit, Exercise 25 of Chapter 4.
I would really appreciate any help, or nudges in the right direction. Thank you!
formal-languages automata context-free
$endgroup$
I am working through a hard exercise in a textbook, and I just can't figure out how to proceed. Here is the problem. Suppose we have the language $L = a^ib^j: i leq j gamma, igeq 0, jgeq 1$ where $gamma$ is some irrational number. How would I prove that $L$ is not a context-free language?
In the case when $gamma$ is rational, it's pretty easy to construct a grammar that accepts the language. But because $gamma$ is irrational, I don't really know what to do. It doesn't look like any of the pumping lemmas would work here. Maybe Parikh's theorem would work here, since it would intuitively seem like this language doesn't have an accompanying semilinear Parikh image.
This exercise is from "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit, Exercise 25 of Chapter 4.
I would really appreciate any help, or nudges in the right direction. Thank you!
formal-languages automata context-free
formal-languages automata context-free
edited yesterday
D.W.♦
102k12127291
102k12127291
asked yesterday
user101859
$begingroup$
Have you tried applying Parikh’s theorem?
$endgroup$
– Yuval Filmus
yesterday
$begingroup$
Why not show that it’s not semilinear directly? Use the definition.
$endgroup$
– Yuval Filmus
yesterday
4
$begingroup$
Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
$endgroup$
– Hendrik Jan
yesterday
$begingroup$
@HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
$endgroup$
– user101859
yesterday
$begingroup$
I appreciate what you were trying to do and your good intentions, but please don't destroy the question by editing it to hide the question (even for a few days). Thank you. P.S. Thank you for crediting the source of the problem!
$endgroup$
– D.W.♦
yesterday
add a comment |
$begingroup$
Have you tried applying Parikh’s theorem?
$endgroup$
– Yuval Filmus
yesterday
$begingroup$
Why not show that it’s not semilinear directly? Use the definition.
$endgroup$
– Yuval Filmus
yesterday
4
$begingroup$
Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
$endgroup$
– Hendrik Jan
yesterday
$begingroup$
@HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
$endgroup$
– user101859
yesterday
$begingroup$
I appreciate what you were trying to do and your good intentions, but please don't destroy the question by editing it to hide the question (even for a few days). Thank you. P.S. Thank you for crediting the source of the problem!
$endgroup$
– D.W.♦
yesterday
$begingroup$
Have you tried applying Parikh’s theorem?
$endgroup$
– Yuval Filmus
yesterday
$begingroup$
Have you tried applying Parikh’s theorem?
$endgroup$
– Yuval Filmus
yesterday
$begingroup$
Why not show that it’s not semilinear directly? Use the definition.
$endgroup$
– Yuval Filmus
yesterday
$begingroup$
Why not show that it’s not semilinear directly? Use the definition.
$endgroup$
– Yuval Filmus
yesterday
4
4
$begingroup$
Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
$endgroup$
– Hendrik Jan
yesterday
$begingroup$
Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
$endgroup$
– Hendrik Jan
yesterday
$begingroup$
@HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
$endgroup$
– user101859
yesterday
$begingroup$
@HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
$endgroup$
– user101859
yesterday
$begingroup$
I appreciate what you were trying to do and your good intentions, but please don't destroy the question by editing it to hide the question (even for a few days). Thank you. P.S. Thank you for crediting the source of the problem!
$endgroup$
– D.W.♦
yesterday
$begingroup$
I appreciate what you were trying to do and your good intentions, but please don't destroy the question by editing it to hide the question (even for a few days). Thank you. P.S. Thank you for crediting the source of the problem!
$endgroup$
– D.W.♦
yesterday
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
According to Parikh's theorem, if $L$ were context-free then the set $M = (a,b) : a leq gamma b $ would be semilinear, that is, it would be the union of finitely many sets of the form $S = u_0 + mathbbN u_1 + cdots + mathbbN u_ell$, for some $u_i = (a_i,b_i)$.
Obviously $u_0 in M$, and moreover $u_i in M$ for each $i > 0$, since otherwise $u_0 + N u_i notin M$ for large enough $N$. Therefore $g(S) := max(a_0/b_0,ldots,a_ell/b_ell) < gamma$ (since $g(S)$ is rational). This means that every $(a,b) in S$ satisfies $a/b leq g(S)$.
Now suppose that $M$ is the union of $S^(1),ldots,S^(m)$, and define $g = max(g(S^(1)),ldots,g(S^(m))) < gamma$. The foregoing shows that every $(a,b)$ in the union satisfies $a/b leq g < gamma$, and we obtain a contradiction, since $sup a/b : (a,b) in M = gamma$.
When $gamma$ is rational, the proof fails, and indeed $M$ is semilinear:
$$
(a,b) : a leq tfracst b = bigcup_a=0^s-1 (a,lceil tfracts a rceil) + mathbbN (s,t) + mathbbN (0,1).
$$
Indeed, by construction, any pair $(a,b)$ in the right-hand side satisfies $a leq tfracst b$ (since $s = tfracst t$). Conversely, suppose that $a leq fracst b$. While $a geq s$ and $b geq t$, subtract $(s,t)$ from $(a,b)$. Eventually $a < s$ (since $b < t$ implies $a leq fracstb < s$). Since $a leq fracst b$, necessarily $b geq lceil tfracts a rceil$. Hence we can subtract $(0,1)$ from $(a,b)$ until we reach $(a,lceil tfracts a rceil)$.
$endgroup$
$begingroup$
Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
$endgroup$
– user101859
yesterday
$begingroup$
No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
$endgroup$
– Yuval Filmus
yesterday
add a comment |
$begingroup$
Every variable except $gamma$ in this answer stands for a positive integer. It is well-known that given an irrational $gamma>0$, there is a sequence of rational numbers $dfraca_1b_1ltdfraca_2b_2ltdfraca_3b_3ltcdots ltgamma$ such that $dfraca_ib_i$ is nearer to $gamma$ than any other rational number smaller than $gamma$ whose denominator is less than $b_i$.
It turns out that the pumping lemma does work!
For the sake of contradiction, let $p$ be the pumping length of $L$ as a context-free language. Let $s=a^a_pb^b_p$, a word that is $L$ but "barely". Note that $|s|>b_pge p$. Consider
$s=uvwxy$, where $|vx|> 1$ and $s_n=uv^nwx^nyin L$ for all $nge0$.
Let $t_a$ and $t_b$ be the number of $a$s and $b$s in $vx$ respectively.
- If $t_b=0$ or $dfract_at_bgtgamma$, for $n$ large enough, the ratio of the number of $a$s to that of $b$s in $s_n$ will be larger than $gamma$, i.e., $s_nnotin L$.
- Otherwise, $dfract_at_bltgamma$. Since $t_b<b_p$, $dfract_at_blt dfraca_pb_p$. Hence,
$dfraca_p-t_ab_p-t_b>dfraca_pb_p$
Since $b_p-t_b<b_p$, $dfraca_p-t_ab_p-t_b>gamma,$
which says that $s_0notin L$.
The above contradiction shows that $L$ cannot be context-free.
Here are two related easier exercises.
Exercise 1. Show that $L_gamma=a^lfloor i gammarfloor: iinBbb N$ is not context-free where $gamma$ is an irrational number.
Exercise 2. Show that $L_gamma=a^ib^j: i leq j gamma, i ge0, jge 0$ is context-free where $gamma$ is a rational number.
$endgroup$
$begingroup$
The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
$endgroup$
– Apass.Jack
yesterday
$begingroup$
The usual construction is to take convergents of the continued fraction.
$endgroup$
– Yuval Filmus
yesterday
$begingroup$
@YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
$endgroup$
– Apass.Jack
yesterday
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "419"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f105836%2flanguage-involving-irrational-number-is-not-a-cfl%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
According to Parikh's theorem, if $L$ were context-free then the set $M = (a,b) : a leq gamma b $ would be semilinear, that is, it would be the union of finitely many sets of the form $S = u_0 + mathbbN u_1 + cdots + mathbbN u_ell$, for some $u_i = (a_i,b_i)$.
Obviously $u_0 in M$, and moreover $u_i in M$ for each $i > 0$, since otherwise $u_0 + N u_i notin M$ for large enough $N$. Therefore $g(S) := max(a_0/b_0,ldots,a_ell/b_ell) < gamma$ (since $g(S)$ is rational). This means that every $(a,b) in S$ satisfies $a/b leq g(S)$.
Now suppose that $M$ is the union of $S^(1),ldots,S^(m)$, and define $g = max(g(S^(1)),ldots,g(S^(m))) < gamma$. The foregoing shows that every $(a,b)$ in the union satisfies $a/b leq g < gamma$, and we obtain a contradiction, since $sup a/b : (a,b) in M = gamma$.
When $gamma$ is rational, the proof fails, and indeed $M$ is semilinear:
$$
(a,b) : a leq tfracst b = bigcup_a=0^s-1 (a,lceil tfracts a rceil) + mathbbN (s,t) + mathbbN (0,1).
$$
Indeed, by construction, any pair $(a,b)$ in the right-hand side satisfies $a leq tfracst b$ (since $s = tfracst t$). Conversely, suppose that $a leq fracst b$. While $a geq s$ and $b geq t$, subtract $(s,t)$ from $(a,b)$. Eventually $a < s$ (since $b < t$ implies $a leq fracstb < s$). Since $a leq fracst b$, necessarily $b geq lceil tfracts a rceil$. Hence we can subtract $(0,1)$ from $(a,b)$ until we reach $(a,lceil tfracts a rceil)$.
$endgroup$
$begingroup$
Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
$endgroup$
– user101859
yesterday
$begingroup$
No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
$endgroup$
– Yuval Filmus
yesterday
add a comment |
$begingroup$
According to Parikh's theorem, if $L$ were context-free then the set $M = (a,b) : a leq gamma b $ would be semilinear, that is, it would be the union of finitely many sets of the form $S = u_0 + mathbbN u_1 + cdots + mathbbN u_ell$, for some $u_i = (a_i,b_i)$.
Obviously $u_0 in M$, and moreover $u_i in M$ for each $i > 0$, since otherwise $u_0 + N u_i notin M$ for large enough $N$. Therefore $g(S) := max(a_0/b_0,ldots,a_ell/b_ell) < gamma$ (since $g(S)$ is rational). This means that every $(a,b) in S$ satisfies $a/b leq g(S)$.
Now suppose that $M$ is the union of $S^(1),ldots,S^(m)$, and define $g = max(g(S^(1)),ldots,g(S^(m))) < gamma$. The foregoing shows that every $(a,b)$ in the union satisfies $a/b leq g < gamma$, and we obtain a contradiction, since $sup a/b : (a,b) in M = gamma$.
When $gamma$ is rational, the proof fails, and indeed $M$ is semilinear:
$$
(a,b) : a leq tfracst b = bigcup_a=0^s-1 (a,lceil tfracts a rceil) + mathbbN (s,t) + mathbbN (0,1).
$$
Indeed, by construction, any pair $(a,b)$ in the right-hand side satisfies $a leq tfracst b$ (since $s = tfracst t$). Conversely, suppose that $a leq fracst b$. While $a geq s$ and $b geq t$, subtract $(s,t)$ from $(a,b)$. Eventually $a < s$ (since $b < t$ implies $a leq fracstb < s$). Since $a leq fracst b$, necessarily $b geq lceil tfracts a rceil$. Hence we can subtract $(0,1)$ from $(a,b)$ until we reach $(a,lceil tfracts a rceil)$.
$endgroup$
$begingroup$
Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
$endgroup$
– user101859
yesterday
$begingroup$
No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
$endgroup$
– Yuval Filmus
yesterday
add a comment |
$begingroup$
According to Parikh's theorem, if $L$ were context-free then the set $M = (a,b) : a leq gamma b $ would be semilinear, that is, it would be the union of finitely many sets of the form $S = u_0 + mathbbN u_1 + cdots + mathbbN u_ell$, for some $u_i = (a_i,b_i)$.
Obviously $u_0 in M$, and moreover $u_i in M$ for each $i > 0$, since otherwise $u_0 + N u_i notin M$ for large enough $N$. Therefore $g(S) := max(a_0/b_0,ldots,a_ell/b_ell) < gamma$ (since $g(S)$ is rational). This means that every $(a,b) in S$ satisfies $a/b leq g(S)$.
Now suppose that $M$ is the union of $S^(1),ldots,S^(m)$, and define $g = max(g(S^(1)),ldots,g(S^(m))) < gamma$. The foregoing shows that every $(a,b)$ in the union satisfies $a/b leq g < gamma$, and we obtain a contradiction, since $sup a/b : (a,b) in M = gamma$.
When $gamma$ is rational, the proof fails, and indeed $M$ is semilinear:
$$
(a,b) : a leq tfracst b = bigcup_a=0^s-1 (a,lceil tfracts a rceil) + mathbbN (s,t) + mathbbN (0,1).
$$
Indeed, by construction, any pair $(a,b)$ in the right-hand side satisfies $a leq tfracst b$ (since $s = tfracst t$). Conversely, suppose that $a leq fracst b$. While $a geq s$ and $b geq t$, subtract $(s,t)$ from $(a,b)$. Eventually $a < s$ (since $b < t$ implies $a leq fracstb < s$). Since $a leq fracst b$, necessarily $b geq lceil tfracts a rceil$. Hence we can subtract $(0,1)$ from $(a,b)$ until we reach $(a,lceil tfracts a rceil)$.
$endgroup$
According to Parikh's theorem, if $L$ were context-free then the set $M = (a,b) : a leq gamma b $ would be semilinear, that is, it would be the union of finitely many sets of the form $S = u_0 + mathbbN u_1 + cdots + mathbbN u_ell$, for some $u_i = (a_i,b_i)$.
Obviously $u_0 in M$, and moreover $u_i in M$ for each $i > 0$, since otherwise $u_0 + N u_i notin M$ for large enough $N$. Therefore $g(S) := max(a_0/b_0,ldots,a_ell/b_ell) < gamma$ (since $g(S)$ is rational). This means that every $(a,b) in S$ satisfies $a/b leq g(S)$.
Now suppose that $M$ is the union of $S^(1),ldots,S^(m)$, and define $g = max(g(S^(1)),ldots,g(S^(m))) < gamma$. The foregoing shows that every $(a,b)$ in the union satisfies $a/b leq g < gamma$, and we obtain a contradiction, since $sup a/b : (a,b) in M = gamma$.
When $gamma$ is rational, the proof fails, and indeed $M$ is semilinear:
$$
(a,b) : a leq tfracst b = bigcup_a=0^s-1 (a,lceil tfracts a rceil) + mathbbN (s,t) + mathbbN (0,1).
$$
Indeed, by construction, any pair $(a,b)$ in the right-hand side satisfies $a leq tfracst b$ (since $s = tfracst t$). Conversely, suppose that $a leq fracst b$. While $a geq s$ and $b geq t$, subtract $(s,t)$ from $(a,b)$. Eventually $a < s$ (since $b < t$ implies $a leq fracstb < s$). Since $a leq fracst b$, necessarily $b geq lceil tfracts a rceil$. Hence we can subtract $(0,1)$ from $(a,b)$ until we reach $(a,lceil tfracts a rceil)$.
answered yesterday
Yuval FilmusYuval Filmus
195k14183347
195k14183347
$begingroup$
Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
$endgroup$
– user101859
yesterday
$begingroup$
No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
$endgroup$
– Yuval Filmus
yesterday
add a comment |
$begingroup$
Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
$endgroup$
– user101859
yesterday
$begingroup$
No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
$endgroup$
– Yuval Filmus
yesterday
$begingroup$
Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
$endgroup$
– user101859
yesterday
$begingroup$
Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
$endgroup$
– user101859
yesterday
$begingroup$
No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
$endgroup$
– Yuval Filmus
yesterday
$begingroup$
No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
$endgroup$
– Yuval Filmus
yesterday
add a comment |
$begingroup$
Every variable except $gamma$ in this answer stands for a positive integer. It is well-known that given an irrational $gamma>0$, there is a sequence of rational numbers $dfraca_1b_1ltdfraca_2b_2ltdfraca_3b_3ltcdots ltgamma$ such that $dfraca_ib_i$ is nearer to $gamma$ than any other rational number smaller than $gamma$ whose denominator is less than $b_i$.
It turns out that the pumping lemma does work!
For the sake of contradiction, let $p$ be the pumping length of $L$ as a context-free language. Let $s=a^a_pb^b_p$, a word that is $L$ but "barely". Note that $|s|>b_pge p$. Consider
$s=uvwxy$, where $|vx|> 1$ and $s_n=uv^nwx^nyin L$ for all $nge0$.
Let $t_a$ and $t_b$ be the number of $a$s and $b$s in $vx$ respectively.
- If $t_b=0$ or $dfract_at_bgtgamma$, for $n$ large enough, the ratio of the number of $a$s to that of $b$s in $s_n$ will be larger than $gamma$, i.e., $s_nnotin L$.
- Otherwise, $dfract_at_bltgamma$. Since $t_b<b_p$, $dfract_at_blt dfraca_pb_p$. Hence,
$dfraca_p-t_ab_p-t_b>dfraca_pb_p$
Since $b_p-t_b<b_p$, $dfraca_p-t_ab_p-t_b>gamma,$
which says that $s_0notin L$.
The above contradiction shows that $L$ cannot be context-free.
Here are two related easier exercises.
Exercise 1. Show that $L_gamma=a^lfloor i gammarfloor: iinBbb N$ is not context-free where $gamma$ is an irrational number.
Exercise 2. Show that $L_gamma=a^ib^j: i leq j gamma, i ge0, jge 0$ is context-free where $gamma$ is a rational number.
$endgroup$
$begingroup$
The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
$endgroup$
– Apass.Jack
yesterday
$begingroup$
The usual construction is to take convergents of the continued fraction.
$endgroup$
– Yuval Filmus
yesterday
$begingroup$
@YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
$endgroup$
– Apass.Jack
yesterday
add a comment |
$begingroup$
Every variable except $gamma$ in this answer stands for a positive integer. It is well-known that given an irrational $gamma>0$, there is a sequence of rational numbers $dfraca_1b_1ltdfraca_2b_2ltdfraca_3b_3ltcdots ltgamma$ such that $dfraca_ib_i$ is nearer to $gamma$ than any other rational number smaller than $gamma$ whose denominator is less than $b_i$.
It turns out that the pumping lemma does work!
For the sake of contradiction, let $p$ be the pumping length of $L$ as a context-free language. Let $s=a^a_pb^b_p$, a word that is $L$ but "barely". Note that $|s|>b_pge p$. Consider
$s=uvwxy$, where $|vx|> 1$ and $s_n=uv^nwx^nyin L$ for all $nge0$.
Let $t_a$ and $t_b$ be the number of $a$s and $b$s in $vx$ respectively.
- If $t_b=0$ or $dfract_at_bgtgamma$, for $n$ large enough, the ratio of the number of $a$s to that of $b$s in $s_n$ will be larger than $gamma$, i.e., $s_nnotin L$.
- Otherwise, $dfract_at_bltgamma$. Since $t_b<b_p$, $dfract_at_blt dfraca_pb_p$. Hence,
$dfraca_p-t_ab_p-t_b>dfraca_pb_p$
Since $b_p-t_b<b_p$, $dfraca_p-t_ab_p-t_b>gamma,$
which says that $s_0notin L$.
The above contradiction shows that $L$ cannot be context-free.
Here are two related easier exercises.
Exercise 1. Show that $L_gamma=a^lfloor i gammarfloor: iinBbb N$ is not context-free where $gamma$ is an irrational number.
Exercise 2. Show that $L_gamma=a^ib^j: i leq j gamma, i ge0, jge 0$ is context-free where $gamma$ is a rational number.
$endgroup$
$begingroup$
The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
$endgroup$
– Apass.Jack
yesterday
$begingroup$
The usual construction is to take convergents of the continued fraction.
$endgroup$
– Yuval Filmus
yesterday
$begingroup$
@YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
$endgroup$
– Apass.Jack
yesterday
add a comment |
$begingroup$
Every variable except $gamma$ in this answer stands for a positive integer. It is well-known that given an irrational $gamma>0$, there is a sequence of rational numbers $dfraca_1b_1ltdfraca_2b_2ltdfraca_3b_3ltcdots ltgamma$ such that $dfraca_ib_i$ is nearer to $gamma$ than any other rational number smaller than $gamma$ whose denominator is less than $b_i$.
It turns out that the pumping lemma does work!
For the sake of contradiction, let $p$ be the pumping length of $L$ as a context-free language. Let $s=a^a_pb^b_p$, a word that is $L$ but "barely". Note that $|s|>b_pge p$. Consider
$s=uvwxy$, where $|vx|> 1$ and $s_n=uv^nwx^nyin L$ for all $nge0$.
Let $t_a$ and $t_b$ be the number of $a$s and $b$s in $vx$ respectively.
- If $t_b=0$ or $dfract_at_bgtgamma$, for $n$ large enough, the ratio of the number of $a$s to that of $b$s in $s_n$ will be larger than $gamma$, i.e., $s_nnotin L$.
- Otherwise, $dfract_at_bltgamma$. Since $t_b<b_p$, $dfract_at_blt dfraca_pb_p$. Hence,
$dfraca_p-t_ab_p-t_b>dfraca_pb_p$
Since $b_p-t_b<b_p$, $dfraca_p-t_ab_p-t_b>gamma,$
which says that $s_0notin L$.
The above contradiction shows that $L$ cannot be context-free.
Here are two related easier exercises.
Exercise 1. Show that $L_gamma=a^lfloor i gammarfloor: iinBbb N$ is not context-free where $gamma$ is an irrational number.
Exercise 2. Show that $L_gamma=a^ib^j: i leq j gamma, i ge0, jge 0$ is context-free where $gamma$ is a rational number.
$endgroup$
Every variable except $gamma$ in this answer stands for a positive integer. It is well-known that given an irrational $gamma>0$, there is a sequence of rational numbers $dfraca_1b_1ltdfraca_2b_2ltdfraca_3b_3ltcdots ltgamma$ such that $dfraca_ib_i$ is nearer to $gamma$ than any other rational number smaller than $gamma$ whose denominator is less than $b_i$.
It turns out that the pumping lemma does work!
For the sake of contradiction, let $p$ be the pumping length of $L$ as a context-free language. Let $s=a^a_pb^b_p$, a word that is $L$ but "barely". Note that $|s|>b_pge p$. Consider
$s=uvwxy$, where $|vx|> 1$ and $s_n=uv^nwx^nyin L$ for all $nge0$.
Let $t_a$ and $t_b$ be the number of $a$s and $b$s in $vx$ respectively.
- If $t_b=0$ or $dfract_at_bgtgamma$, for $n$ large enough, the ratio of the number of $a$s to that of $b$s in $s_n$ will be larger than $gamma$, i.e., $s_nnotin L$.
- Otherwise, $dfract_at_bltgamma$. Since $t_b<b_p$, $dfract_at_blt dfraca_pb_p$. Hence,
$dfraca_p-t_ab_p-t_b>dfraca_pb_p$
Since $b_p-t_b<b_p$, $dfraca_p-t_ab_p-t_b>gamma,$
which says that $s_0notin L$.
The above contradiction shows that $L$ cannot be context-free.
Here are two related easier exercises.
Exercise 1. Show that $L_gamma=a^lfloor i gammarfloor: iinBbb N$ is not context-free where $gamma$ is an irrational number.
Exercise 2. Show that $L_gamma=a^ib^j: i leq j gamma, i ge0, jge 0$ is context-free where $gamma$ is a rational number.
edited yesterday
answered yesterday
Apass.JackApass.Jack
13.2k1939
13.2k1939
$begingroup$
The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
$endgroup$
– Apass.Jack
yesterday
$begingroup$
The usual construction is to take convergents of the continued fraction.
$endgroup$
– Yuval Filmus
yesterday
$begingroup$
@YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
$endgroup$
– Apass.Jack
yesterday
add a comment |
$begingroup$
The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
$endgroup$
– Apass.Jack
yesterday
$begingroup$
The usual construction is to take convergents of the continued fraction.
$endgroup$
– Yuval Filmus
yesterday
$begingroup$
@YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
$endgroup$
– Apass.Jack
yesterday
$begingroup$
The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
$endgroup$
– Apass.Jack
yesterday
$begingroup$
The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
$endgroup$
– Apass.Jack
yesterday
$begingroup$
The usual construction is to take convergents of the continued fraction.
$endgroup$
– Yuval Filmus
yesterday
$begingroup$
The usual construction is to take convergents of the continued fraction.
$endgroup$
– Yuval Filmus
yesterday
$begingroup$
@YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
$endgroup$
– Apass.Jack
yesterday
$begingroup$
@YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
$endgroup$
– Apass.Jack
yesterday
add a comment |
Thanks for contributing an answer to Computer Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f105836%2flanguage-involving-irrational-number-is-not-a-cfl%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Have you tried applying Parikh’s theorem?
$endgroup$
– Yuval Filmus
yesterday
$begingroup$
Why not show that it’s not semilinear directly? Use the definition.
$endgroup$
– Yuval Filmus
yesterday
4
$begingroup$
Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
$endgroup$
– Hendrik Jan
yesterday
$begingroup$
@HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
$endgroup$
– user101859
yesterday
$begingroup$
I appreciate what you were trying to do and your good intentions, but please don't destroy the question by editing it to hide the question (even for a few days). Thank you. P.S. Thank you for crediting the source of the problem!
$endgroup$
– D.W.♦
yesterday