Number of real Solution [on hold] The Next CEO of Stack OverflowLinear systems. Please help me solve thissolution of the set of real non-linear equationsFinding the conditions of a system of equations for a type of solutionFind $a,b$ for which $xyz+z=a,quad xyz^2+z=b,quad x^2+y^2+z^2=4$ has unique solutionReal problems solved with systemsApproximate a solution of a system of non linear equationscheck if a non linear system of equations of $n$ unknowns has a solutionSystem of equations, linear. Unique solution, infinite number of solutions, no solution?Amount of solution pairs $(e,f)$ of this system of equations?Analytical solution to polynomial system

What was Carter Burke's job for "the company" in Aliens?

How to use ReplaceAll on an expression that contains a rule

How to calculate the two limits?

If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?

Is a distribution that is normal, but highly skewed, considered Gaussian?

Reshaping json / reparing json inside shell script (remove trailing comma)

Is it correct to say moon starry nights?

What happened in Rome, when the western empire "fell"?

Why is information "lost" when it got into a black hole?

What is the process for purifying your home if you believe it may have been previously used for pagan worship?

Small nick on power cord from an electric alarm clock, and copper wiring exposed but intact

How can I make proper oatmeal cookies?

Why am I getting "Static method cannot be referenced from a non static context: String String.valueOf(Object)"?

Point distance program written without a framework

Is it ever safe to open a suspicious HTML file (e.g. email attachment)?

My ex-girlfriend uses my Apple ID to login to her iPad, do I have to give her my Apple ID password to reset it?

Is there an equivalent of cd - for cp or mv

Strange use of "whether ... than ..." in official text

Is Nisuin Biblical or Rabbinic?

What does "shotgun unity" refer to here in this sentence?

Are the names of these months realistic?

How to get the last not-null value in an ordered column of a huge table?

Is there a way to save my career from absolute disaster?

What connection does MS Office have to Netscape Navigator?



Number of real Solution [on hold]



The Next CEO of Stack OverflowLinear systems. Please help me solve thissolution of the set of real non-linear equationsFinding the conditions of a system of equations for a type of solutionFind $a,b$ for which $xyz+z=a,quad xyz^2+z=b,quad x^2+y^2+z^2=4$ has unique solutionReal problems solved with systemsApproximate a solution of a system of non linear equationscheck if a non linear system of equations of $n$ unknowns has a solutionSystem of equations, linear. Unique solution, infinite number of solutions, no solution?Amount of solution pairs $(e,f)$ of this system of equations?Analytical solution to polynomial system










-1












$begingroup$


Find the number of real Solution of the system of equations



$$ x = frac 2z^2 1+z^2 , y = frac 2x^2 1+x^2 , z = frac 2y^2 1+y^2 $$










share|cite|improve this question











$endgroup$



put on hold as off-topic by José Carlos Santos, Saad, max_zorn, RRL, Javi 2 days ago


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Saad, max_zorn, RRL, Javi
If this question can be reworded to fit the rules in the help center, please edit the question.




















    -1












    $begingroup$


    Find the number of real Solution of the system of equations



    $$ x = frac 2z^2 1+z^2 , y = frac 2x^2 1+x^2 , z = frac 2y^2 1+y^2 $$










    share|cite|improve this question











    $endgroup$



    put on hold as off-topic by José Carlos Santos, Saad, max_zorn, RRL, Javi 2 days ago


    This question appears to be off-topic. The users who voted to close gave this specific reason:


    • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Saad, max_zorn, RRL, Javi
    If this question can be reworded to fit the rules in the help center, please edit the question.


















      -1












      -1








      -1


      2



      $begingroup$


      Find the number of real Solution of the system of equations



      $$ x = frac 2z^2 1+z^2 , y = frac 2x^2 1+x^2 , z = frac 2y^2 1+y^2 $$










      share|cite|improve this question











      $endgroup$




      Find the number of real Solution of the system of equations



      $$ x = frac 2z^2 1+z^2 , y = frac 2x^2 1+x^2 , z = frac 2y^2 1+y^2 $$







      systems-of-equations






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 days ago









      user1952500

      841712




      841712










      asked 2 days ago









      user157835user157835

      10417




      10417




      put on hold as off-topic by José Carlos Santos, Saad, max_zorn, RRL, Javi 2 days ago


      This question appears to be off-topic. The users who voted to close gave this specific reason:


      • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Saad, max_zorn, RRL, Javi
      If this question can be reworded to fit the rules in the help center, please edit the question.







      put on hold as off-topic by José Carlos Santos, Saad, max_zorn, RRL, Javi 2 days ago


      This question appears to be off-topic. The users who voted to close gave this specific reason:


      • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Saad, max_zorn, RRL, Javi
      If this question can be reworded to fit the rules in the help center, please edit the question.




















          2 Answers
          2






          active

          oldest

          votes


















          5












          $begingroup$

          We have the obvious solutions $(x,y,z)=(0,0,0)=(1,1,1)$. Over the real numbers these are all, but over the complex numbers there are six additional solutions, given by
          $$
          x=frac - 445z^5 - 962z^4 - 110z^3 + 654z^2 - 21z - 8356,
          $$



          $$
          y=frac6942z^5 + 9863z^4 + 1852z^3 + 902z^2 + 214z + 139712,
          $$

          where $z$ is a (non-real) complex root of the polynomial
          $$
          89z^6 + 50z^5 + 31z^4 + 12z^3 + 7z^2 + 2z + 1.
          $$






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Thanks, is there any approach to show that there will be no real Solution other than 1 and 0
            $endgroup$
            – user157835
            2 days ago











          • $begingroup$
            Yes, there are several approaches. Solving the system with resultants gives all complex solutions. Cancelling out the non-real ones gives the real solutions.
            $endgroup$
            – Dietrich Burde
            2 days ago



















          5












          $begingroup$

          The problem is not new and has appeared over here quite a few times as far as I could remember. Seeking the "real solutions" is perhaps more interesting than the "imaginary solutions". For the real solutions, a functional approach is my favorite. So let $f(t) = dfrac2t^21+t^2, t in mathbbR^+$. We have $f'(t) = dfrac4t(1+t^2)^2> 0$. Thus let's say if $x ge y ge z implies f(x) ge f(y) ge f(z)implies y ge z ge x implies x ge y ge z ge ximplies x = y = zimplies x = dfrac2x^21+x^2implies x = 0,1implies (x,y,z) = (0,0,0) ; (1,1,1)$,and these are all the (real) solutions !






          share|cite|improve this answer









          $endgroup$



















            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            5












            $begingroup$

            We have the obvious solutions $(x,y,z)=(0,0,0)=(1,1,1)$. Over the real numbers these are all, but over the complex numbers there are six additional solutions, given by
            $$
            x=frac - 445z^5 - 962z^4 - 110z^3 + 654z^2 - 21z - 8356,
            $$



            $$
            y=frac6942z^5 + 9863z^4 + 1852z^3 + 902z^2 + 214z + 139712,
            $$

            where $z$ is a (non-real) complex root of the polynomial
            $$
            89z^6 + 50z^5 + 31z^4 + 12z^3 + 7z^2 + 2z + 1.
            $$






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              Thanks, is there any approach to show that there will be no real Solution other than 1 and 0
              $endgroup$
              – user157835
              2 days ago











            • $begingroup$
              Yes, there are several approaches. Solving the system with resultants gives all complex solutions. Cancelling out the non-real ones gives the real solutions.
              $endgroup$
              – Dietrich Burde
              2 days ago
















            5












            $begingroup$

            We have the obvious solutions $(x,y,z)=(0,0,0)=(1,1,1)$. Over the real numbers these are all, but over the complex numbers there are six additional solutions, given by
            $$
            x=frac - 445z^5 - 962z^4 - 110z^3 + 654z^2 - 21z - 8356,
            $$



            $$
            y=frac6942z^5 + 9863z^4 + 1852z^3 + 902z^2 + 214z + 139712,
            $$

            where $z$ is a (non-real) complex root of the polynomial
            $$
            89z^6 + 50z^5 + 31z^4 + 12z^3 + 7z^2 + 2z + 1.
            $$






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              Thanks, is there any approach to show that there will be no real Solution other than 1 and 0
              $endgroup$
              – user157835
              2 days ago











            • $begingroup$
              Yes, there are several approaches. Solving the system with resultants gives all complex solutions. Cancelling out the non-real ones gives the real solutions.
              $endgroup$
              – Dietrich Burde
              2 days ago














            5












            5








            5





            $begingroup$

            We have the obvious solutions $(x,y,z)=(0,0,0)=(1,1,1)$. Over the real numbers these are all, but over the complex numbers there are six additional solutions, given by
            $$
            x=frac - 445z^5 - 962z^4 - 110z^3 + 654z^2 - 21z - 8356,
            $$



            $$
            y=frac6942z^5 + 9863z^4 + 1852z^3 + 902z^2 + 214z + 139712,
            $$

            where $z$ is a (non-real) complex root of the polynomial
            $$
            89z^6 + 50z^5 + 31z^4 + 12z^3 + 7z^2 + 2z + 1.
            $$






            share|cite|improve this answer









            $endgroup$



            We have the obvious solutions $(x,y,z)=(0,0,0)=(1,1,1)$. Over the real numbers these are all, but over the complex numbers there are six additional solutions, given by
            $$
            x=frac - 445z^5 - 962z^4 - 110z^3 + 654z^2 - 21z - 8356,
            $$



            $$
            y=frac6942z^5 + 9863z^4 + 1852z^3 + 902z^2 + 214z + 139712,
            $$

            where $z$ is a (non-real) complex root of the polynomial
            $$
            89z^6 + 50z^5 + 31z^4 + 12z^3 + 7z^2 + 2z + 1.
            $$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 2 days ago









            Dietrich BurdeDietrich Burde

            81.6k648106




            81.6k648106











            • $begingroup$
              Thanks, is there any approach to show that there will be no real Solution other than 1 and 0
              $endgroup$
              – user157835
              2 days ago











            • $begingroup$
              Yes, there are several approaches. Solving the system with resultants gives all complex solutions. Cancelling out the non-real ones gives the real solutions.
              $endgroup$
              – Dietrich Burde
              2 days ago

















            • $begingroup$
              Thanks, is there any approach to show that there will be no real Solution other than 1 and 0
              $endgroup$
              – user157835
              2 days ago











            • $begingroup$
              Yes, there are several approaches. Solving the system with resultants gives all complex solutions. Cancelling out the non-real ones gives the real solutions.
              $endgroup$
              – Dietrich Burde
              2 days ago
















            $begingroup$
            Thanks, is there any approach to show that there will be no real Solution other than 1 and 0
            $endgroup$
            – user157835
            2 days ago





            $begingroup$
            Thanks, is there any approach to show that there will be no real Solution other than 1 and 0
            $endgroup$
            – user157835
            2 days ago













            $begingroup$
            Yes, there are several approaches. Solving the system with resultants gives all complex solutions. Cancelling out the non-real ones gives the real solutions.
            $endgroup$
            – Dietrich Burde
            2 days ago





            $begingroup$
            Yes, there are several approaches. Solving the system with resultants gives all complex solutions. Cancelling out the non-real ones gives the real solutions.
            $endgroup$
            – Dietrich Burde
            2 days ago












            5












            $begingroup$

            The problem is not new and has appeared over here quite a few times as far as I could remember. Seeking the "real solutions" is perhaps more interesting than the "imaginary solutions". For the real solutions, a functional approach is my favorite. So let $f(t) = dfrac2t^21+t^2, t in mathbbR^+$. We have $f'(t) = dfrac4t(1+t^2)^2> 0$. Thus let's say if $x ge y ge z implies f(x) ge f(y) ge f(z)implies y ge z ge x implies x ge y ge z ge ximplies x = y = zimplies x = dfrac2x^21+x^2implies x = 0,1implies (x,y,z) = (0,0,0) ; (1,1,1)$,and these are all the (real) solutions !






            share|cite|improve this answer









            $endgroup$

















              5












              $begingroup$

              The problem is not new and has appeared over here quite a few times as far as I could remember. Seeking the "real solutions" is perhaps more interesting than the "imaginary solutions". For the real solutions, a functional approach is my favorite. So let $f(t) = dfrac2t^21+t^2, t in mathbbR^+$. We have $f'(t) = dfrac4t(1+t^2)^2> 0$. Thus let's say if $x ge y ge z implies f(x) ge f(y) ge f(z)implies y ge z ge x implies x ge y ge z ge ximplies x = y = zimplies x = dfrac2x^21+x^2implies x = 0,1implies (x,y,z) = (0,0,0) ; (1,1,1)$,and these are all the (real) solutions !






              share|cite|improve this answer









              $endgroup$















                5












                5








                5





                $begingroup$

                The problem is not new and has appeared over here quite a few times as far as I could remember. Seeking the "real solutions" is perhaps more interesting than the "imaginary solutions". For the real solutions, a functional approach is my favorite. So let $f(t) = dfrac2t^21+t^2, t in mathbbR^+$. We have $f'(t) = dfrac4t(1+t^2)^2> 0$. Thus let's say if $x ge y ge z implies f(x) ge f(y) ge f(z)implies y ge z ge x implies x ge y ge z ge ximplies x = y = zimplies x = dfrac2x^21+x^2implies x = 0,1implies (x,y,z) = (0,0,0) ; (1,1,1)$,and these are all the (real) solutions !






                share|cite|improve this answer









                $endgroup$



                The problem is not new and has appeared over here quite a few times as far as I could remember. Seeking the "real solutions" is perhaps more interesting than the "imaginary solutions". For the real solutions, a functional approach is my favorite. So let $f(t) = dfrac2t^21+t^2, t in mathbbR^+$. We have $f'(t) = dfrac4t(1+t^2)^2> 0$. Thus let's say if $x ge y ge z implies f(x) ge f(y) ge f(z)implies y ge z ge x implies x ge y ge z ge ximplies x = y = zimplies x = dfrac2x^21+x^2implies x = 0,1implies (x,y,z) = (0,0,0) ; (1,1,1)$,and these are all the (real) solutions !







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 2 days ago









                DeepSeaDeepSea

                71.4k54488




                71.4k54488













                    Popular posts from this blog

                    getting Checkpoint VPN SSL Network Extender working in the command lineHow to connect to CheckPoint VPN on Ubuntu 18.04LTS?Will the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayVPN SSL Network Extender in FirefoxLinux Checkpoint SNX tool configuration issuesCheck Point - Connect under Linux - snx + OTPSNX VPN Ububuntu 18.XXUsing Checkpoint VPN SSL Network Extender CLI with certificateVPN with network manager (nm-applet) is not workingWill the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayImport VPN config files to NetworkManager from command lineTrouble connecting to VPN using network-manager, while command line worksStart a VPN connection with PPTP protocol on command linestarting a docker service daemon breaks the vpn networkCan't connect to vpn with Network-managerVPN SSL Network Extender in FirefoxUsing Checkpoint VPN SSL Network Extender CLI with certificate

                    대한민국 목차 국명 지리 역사 정치 국방 경제 사회 문화 국제 순위 관련 항목 각주 외부 링크 둘러보기 메뉴북위 37° 34′ 08″ 동경 126° 58′ 36″ / 북위 37.568889° 동경 126.976667°  / 37.568889; 126.976667ehThe Korean Repository문단을 편집문단을 편집추가해Clarkson PLC 사Report for Selected Countries and Subjects-Korea“Human Development Index and its components: P.198”“http://www.law.go.kr/%EB%B2%95%EB%A0%B9/%EB%8C%80%ED%95%9C%EB%AF%BC%EA%B5%AD%EA%B5%AD%EA%B8%B0%EB%B2%95”"한국은 국제법상 한반도 유일 합법정부 아니다" - 오마이뉴스 모바일Report for Selected Countries and Subjects: South Korea격동의 역사와 함께한 조선일보 90년 : 조선일보 인수해 혁신시킨 신석우, 임시정부 때는 '대한민국' 국호(國號) 정해《우리가 몰랐던 우리 역사: 나라 이름의 비밀을 찾아가는 역사 여행》“남북 공식호칭 ‘남한’‘북한’으로 쓴다”“Corea 대 Korea, 누가 이긴 거야?”국내기후자료 - 한국[김대중 前 대통령 서거] 과감한 구조개혁 'DJ노믹스'로 최단기간 환란극복 :: 네이버 뉴스“이라크 "韓-쿠르드 유전개발 MOU 승인 안해"(종합)”“해외 우리국민 추방사례 43%가 일본”차기전차 K2'흑표'의 세계 최고 전력 분석, 쿠키뉴스 엄기영, 2007-03-02두산인프라, 헬기잡는 장갑차 'K21'...내년부터 공급, 고뉴스 이대준, 2008-10-30과거 내용 찾기mk 뉴스 - 구매력 기준으로 보면 한국 1인당 소득 3만弗과거 내용 찾기"The N-11: More Than an Acronym"Archived조선일보 최우석, 2008-11-01Global 500 2008: Countries - South Korea“몇년째 '시한폭탄'... 가계부채, 올해는 터질까”가구당 부채 5000만원 처음 넘어서“‘빚’으로 내몰리는 사회.. 위기의 가계대출”“[경제365] 공공부문 부채 급증…800조 육박”“"소득 양극화 다소 완화...불평등은 여전"”“공정사회·공생발전 한참 멀었네”iSuppli,08年2QのDRAMシェア・ランキングを発表(08/8/11)South Korea dominates shipbuilding industry | Stock Market News & Stocks to Watch from StraightStocks한국 자동차 생산, 3년 연속 세계 5위자동차수출 '현대-삼성 웃고 기아-대우-쌍용은 울고' 과거 내용 찾기동반성장위 창립 1주년 맞아Archived"중기적합 3개업종 합의 무시한 채 선정"李대통령, 사업 무분별 확장 소상공인 생계 위협 질타삼성-LG, 서민업종인 빵·분식사업 잇따라 철수상생은 뒷전…SSM ‘몸집 불리기’ 혈안Archived“경부고속도에 '아시안하이웨이' 표지판”'철의 실크로드' 앞서 '말(言)의 실크로드'부터, 프레시안 정창현, 2008-10-01“'서울 지하철은 안전한가?'”“서울시 “올해 안에 모든 지하철역 스크린도어 설치””“부산지하철 1,2호선 승강장 안전펜스 설치 완료”“전교조, 정부 노조 통계서 처음 빠져”“[Weekly BIZ] 도요타 '제로 이사회'가 리콜 사태 불러들였다”“S Korea slams high tuition costs”““정치가 여론 양극화 부채질… 합리주의 절실””“〈"`촛불집회'는 민주주의의 질적 변화 상징"〉”““촛불집회가 민주주의 왜곡 초래””“국민 65%, "한국 노사관계 대립적"”“한국 국가경쟁력 27위‥노사관계 '꼴찌'”“제대로 형성되지 않은 대한민국 이념지형”“[신년기획-갈등의 시대] 갈등지수 OECD 4위…사회적 손실 GDP 27% 무려 300조”“2012 총선-대선의 키워드는 '국민과 소통'”“한국 삶의 질 27위, 2000년과 2008년 연속 하위권 머물러”“[해피 코리아] 행복점수 68점…해외 평가선 '낙제점'”“한국 어린이·청소년 행복지수 3년 연속 OECD ‘꼴찌’”“한국 이혼율 OECD중 8위”“[통계청] 한국 이혼율 OECD 4위”“오피니언 [이렇게 생각한다] `부부의 날` 에 돌아본 이혼율 1위 한국”“Suicide Rates by Country, Global Health Observatory Data Repository.”“1. 또 다른 차별”“오피니언 [편집자에게] '왕따'와 '패거리 정치' 심리는 닮은꼴”“[미래한국리포트] 무한경쟁에 빠진 대한민국”“대학생 98% "외모가 경쟁력이라는 말 동의"”“특급호텔 웨딩·200만원대 유모차… "남보다 더…" 호화病, 고질병 됐다”“[스트레스 공화국] ① 경쟁사회, 스트레스 쌓인다”““매일 30여명 자살 한국, 의사보다 무속인에…””“"자살 부르는 '우울증', 환자 중 85% 치료 안 받아"”“정신병원을 가다”“대한민국도 ‘묻지마 범죄’,안전지대 아니다”“유엔 "학생 '성적 지향'에 따른 차별 금지하라"”“유엔아동권리위원회 보고서 및 번역본 원문”“고졸 성공스토리 담은 '제빵왕 김탁구' 드라마 나온다”“‘빛 좋은 개살구’ 고졸 취업…실습 대신 착취”원본 문서“정신건강, 사회적 편견부터 고쳐드립니다”‘소통’과 ‘행복’에 목 마른 사회가 잠들어 있던 ‘심리학’ 깨웠다“[포토] 사유리-곽금주 교수의 유쾌한 심리상담”“"올해 한국인 평균 영화관람횟수 세계 1위"(종합)”“[게임연중기획] 게임은 문화다-여가활동 1순위 게임”“영화속 ‘영어 지상주의’ …“왠지 씁쓸한데””“2월 `신문 부수 인증기관` 지정..방송법 후속작업”“무료신문 성장동력 ‘차별성’과 ‘갈등해소’”대한민국 국회 법률지식정보시스템"Pew Research Center's Religion & Public Life Project: South Korea"“amp;vwcd=MT_ZTITLE&path=인구·가구%20>%20인구총조사%20>%20인구부문%20>%20 총조사인구(2005)%20>%20전수부문&oper_YN=Y&item=&keyword=종교별%20인구& amp;lang_mode=kor&list_id= 2005년 통계청 인구 총조사”원본 문서“한국인이 좋아하는 취미와 운동 (2004-2009)”“한국인이 좋아하는 취미와 운동 (2004-2014)”Archived“한국, `부분적 언론자유국' 강등〈프리덤하우스〉”“국경없는기자회 "한국, 인터넷감시 대상국"”“한국, 조선산업 1위 유지(S. Korea Stays Top Shipbuilding Nation) RZD-Partner Portal”원본 문서“한국, 4년 만에 ‘선박건조 1위’”“옛 마산시,인터넷속도 세계 1위”“"한국 초고속 인터넷망 세계1위"”“인터넷·휴대폰 요금, 외국보다 훨씬 비싸”“한국 관세행정 6년 연속 세계 '1위'”“한국 교통사고 사망자 수 OECD 회원국 중 2위”“결핵 후진국' 한국, 환자가 급증한 이유는”“수술은 신중해야… 자칫하면 생명 위협”대한민국분류대한민국의 지도대한민국 정부대표 다국어포털대한민국 전자정부대한민국 국회한국방송공사about korea and information korea브리태니커 백과사전(한국편)론리플래닛의 정보(한국편)CIA의 세계 정보(한국편)마리암 부디아 (Mariam Budia),『한국: 하늘이 내린 한 폭의 그림』, 서울: 트랜스라틴 19호 (2012년 3월)대한민국ehehehehehehehehehehehehehehWorldCat132441370n791268020000 0001 2308 81034078029-6026373548cb11863345f(데이터)00573706ge128495

                    Cannot Extend partition with GParted The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Community Moderator Election ResultsCan't increase partition size with GParted?GParted doesn't recognize the unallocated space after my current partitionWhat is the best way to add unallocated space located before to Ubuntu 12.04 partition with GParted live?I can't figure out how to extend my Arch home partition into free spaceGparted Linux Mint 18.1 issueTrying to extend but swap partition is showing as Unknown in Gparted, shows proper from fdiskRearrange partitions in gparted to extend a partitionUnable to extend partition even though unallocated space is next to it using GPartedAllocate free space to root partitiongparted: how to merge unallocated space with a partition