Number of surjections from $1,2,3,4,5,6$ to $a,b,c,d,e$ The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Pascal's relation theorem from the book Combinatorics, R. Merris; need some help in clarificationGet the number of subset.Comparing probabilities of drawing balls of certain color, with and without replacementDifferent ways of picking sets producing different results?Number of possibilities of permutation with repetitions with additional equal elements addedStuck trying to understand N Choose K formulaUnderstanding difference between ordered sequences with repetition and unordered sequences with repetitionIs there a relation between the triangular numbers and the combinations with repetition?How many equivalence classes are over $4$-digit strings from $1,2,3,4,5,6$ if strings are in relation of they differ in order or are the same?A subset of three distinct positive integers, each less than 20, is selected. How many subsets will contain exactly one even number?

Windows 10: How to Lock (not sleep) laptop on lid close?

How did the crowd guess the pentatonic scale in Bobby McFerrin's presentation?

Store Dynamic-accessible hidden metadata in a cell

Was credit for the black hole image misappropriated?

For what reasons would an animal species NOT cross a *horizontal* land bridge?

Didn't get enough time to take a Coding Test - what to do now?

When did F become S? Why?

Huge performance difference of the command find with and without using %M option to show permissions

"is" operation returns false even though two objects have same id

Can the Right Ascension and Argument of Perigee of a spacecraft's orbit keep varying by themselves with time?

How many cones with angle theta can I pack into the unit sphere?

Variable with quotation marks "$()"

What was the last x86 CPU that did not have the x87 floating-point unit built in?

Homework question about an engine pulling a train

Why can't wing-mounted spoilers be used to steepen approaches?

Does Parliament hold absolute power in the UK?

Do working physicists consider Newtonian mechanics to be "falsified"?

Accepted by European university, rejected by all American ones I applied to? Possible reasons?

Why not take a picture of a closer black hole?

Why are PDP-7-style microprogrammed instructions out of vogue?

What does Linus Torvalds mean when he says that Git "never ever" tracks a file?

Why did Peik Lin say, "I'm not an animal"?

How to make Illustrator type tool selection automatically adapt with text length

What happens to a Warlock's expended Spell Slots when they gain a Level?



Number of surjections from $1,2,3,4,5,6$ to $a,b,c,d,e$



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Pascal's relation theorem from the book Combinatorics, R. Merris; need some help in clarificationGet the number of subset.Comparing probabilities of drawing balls of certain color, with and without replacementDifferent ways of picking sets producing different results?Number of possibilities of permutation with repetitions with additional equal elements addedStuck trying to understand N Choose K formulaUnderstanding difference between ordered sequences with repetition and unordered sequences with repetitionIs there a relation between the triangular numbers and the combinations with repetition?How many equivalence classes are over $4$-digit strings from $1,2,3,4,5,6$ if strings are in relation of they differ in order or are the same?A subset of three distinct positive integers, each less than 20, is selected. How many subsets will contain exactly one even number?










1












$begingroup$


Where $A = 1,2,3,4,5,6$ and $B = a,b,c,d,e$.



My book says it's:



  1. Select a two-element subset of $A$.

  2. Assign images without repetition to the two-element subset and the four
    remaining individual elements of $A$.

This shows that the total number of surjections from $A$ to $B$ is $C(6, 2)5! = 1800$.



I'm confused at why it's multiplied by $5!$ and not by $4!$. Also in part 2, when we assign images, do they mean images in $B$?










share|cite|improve this question











$endgroup$











  • $begingroup$
    There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
    $endgroup$
    – lulu
    Apr 9 at 2:29










  • $begingroup$
    I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
    $endgroup$
    – Zaku
    Apr 9 at 2:31






  • 2




    $begingroup$
    It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of $P,3,4,5,6$ onto $a,b,c,d,e$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
    $endgroup$
    – lulu
    Apr 9 at 2:34










  • $begingroup$
    " I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $=6choose 2*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$=6choose 2*5! $.
    $endgroup$
    – fleablood
    Apr 9 at 2:50















1












$begingroup$


Where $A = 1,2,3,4,5,6$ and $B = a,b,c,d,e$.



My book says it's:



  1. Select a two-element subset of $A$.

  2. Assign images without repetition to the two-element subset and the four
    remaining individual elements of $A$.

This shows that the total number of surjections from $A$ to $B$ is $C(6, 2)5! = 1800$.



I'm confused at why it's multiplied by $5!$ and not by $4!$. Also in part 2, when we assign images, do they mean images in $B$?










share|cite|improve this question











$endgroup$











  • $begingroup$
    There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
    $endgroup$
    – lulu
    Apr 9 at 2:29










  • $begingroup$
    I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
    $endgroup$
    – Zaku
    Apr 9 at 2:31






  • 2




    $begingroup$
    It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of $P,3,4,5,6$ onto $a,b,c,d,e$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
    $endgroup$
    – lulu
    Apr 9 at 2:34










  • $begingroup$
    " I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $=6choose 2*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$=6choose 2*5! $.
    $endgroup$
    – fleablood
    Apr 9 at 2:50













1












1








1


2



$begingroup$


Where $A = 1,2,3,4,5,6$ and $B = a,b,c,d,e$.



My book says it's:



  1. Select a two-element subset of $A$.

  2. Assign images without repetition to the two-element subset and the four
    remaining individual elements of $A$.

This shows that the total number of surjections from $A$ to $B$ is $C(6, 2)5! = 1800$.



I'm confused at why it's multiplied by $5!$ and not by $4!$. Also in part 2, when we assign images, do they mean images in $B$?










share|cite|improve this question











$endgroup$




Where $A = 1,2,3,4,5,6$ and $B = a,b,c,d,e$.



My book says it's:



  1. Select a two-element subset of $A$.

  2. Assign images without repetition to the two-element subset and the four
    remaining individual elements of $A$.

This shows that the total number of surjections from $A$ to $B$ is $C(6, 2)5! = 1800$.



I'm confused at why it's multiplied by $5!$ and not by $4!$. Also in part 2, when we assign images, do they mean images in $B$?







combinatorics functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 9 at 10:42









N. F. Taussig

45.2k103358




45.2k103358










asked Apr 9 at 2:26









ZakuZaku

3089




3089











  • $begingroup$
    There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
    $endgroup$
    – lulu
    Apr 9 at 2:29










  • $begingroup$
    I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
    $endgroup$
    – Zaku
    Apr 9 at 2:31






  • 2




    $begingroup$
    It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of $P,3,4,5,6$ onto $a,b,c,d,e$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
    $endgroup$
    – lulu
    Apr 9 at 2:34










  • $begingroup$
    " I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $=6choose 2*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$=6choose 2*5! $.
    $endgroup$
    – fleablood
    Apr 9 at 2:50
















  • $begingroup$
    There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
    $endgroup$
    – lulu
    Apr 9 at 2:29










  • $begingroup$
    I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
    $endgroup$
    – Zaku
    Apr 9 at 2:31






  • 2




    $begingroup$
    It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of $P,3,4,5,6$ onto $a,b,c,d,e$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
    $endgroup$
    – lulu
    Apr 9 at 2:34










  • $begingroup$
    " I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $=6choose 2*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$=6choose 2*5! $.
    $endgroup$
    – fleablood
    Apr 9 at 2:50















$begingroup$
There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
$endgroup$
– lulu
Apr 9 at 2:29




$begingroup$
There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
$endgroup$
– lulu
Apr 9 at 2:29












$begingroup$
I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
$endgroup$
– Zaku
Apr 9 at 2:31




$begingroup$
I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
$endgroup$
– Zaku
Apr 9 at 2:31




2




2




$begingroup$
It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of $P,3,4,5,6$ onto $a,b,c,d,e$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
$endgroup$
– lulu
Apr 9 at 2:34




$begingroup$
It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of $P,3,4,5,6$ onto $a,b,c,d,e$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
$endgroup$
– lulu
Apr 9 at 2:34












$begingroup$
" I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $=6choose 2*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$=6choose 2*5! $.
$endgroup$
– fleablood
Apr 9 at 2:50




$begingroup$
" I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $=6choose 2*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$=6choose 2*5! $.
$endgroup$
– fleablood
Apr 9 at 2:50










3 Answers
3






active

oldest

votes


















4












$begingroup$

How many ways can $A$ be partitioned into $5$ blocks?



Answer: $binom62 = 15$



Given any $5text-block$ partition of $A$, in how many ways can the blocks be bijectively
assigned to the $5$ element set $B$?



Answer: $5! =120$



How many surjective functions from $A$ onto $B$ are there?



Answer: $15 times 120 = 1800$






share|cite|improve this answer









$endgroup$




















    4












    $begingroup$

    Think of it this way:



    There is a pair of terms that get mapped to the same element. Call that pair $alpha $. There are four terms remaining. Call them $beta,gamma,delta$ and $epsilon $.



    There are $6choose 2 $ possible pairs that can be $alpha $.



    And we must map $alpha,beta,gamma,delta,epsilon $ to $a,b,c,d,e $. There is $5! $ ways to do that.






    share|cite|improve this answer









    $endgroup$




















      0












      $begingroup$

      (i). Select a $2$-member $A_1subset A.$ There are $binom 62$ ways to do this. Select a $1$-member $B_1subset B.$ There are $binom 51$ ways to do this. There are $binom 62binom 51$ such pairs $(A_1,B_1)$ and for each pair there is a set $F(A_1,B_1)$ of $4!$ surjections $f:Ato B$ such that $f(x):xin A_1=B_1.$



      And if $(A_1, B_1)ne (A'_1, B'_1)$ then the sets $F(A_1,B_1), F(A'_1,B'_1)$ are disjoint.



      So there are at least $binom 62binom 514!=(15)(5)(4!)=(15)(5!)=1800$ surjections.



      (ii). Every surjection $f:Ato B$ belongs to some $F(A_1,B_1)$ so there are at most $1800$ surjections.



      In other words: (i) we didn't count any $f$ more than once, and (ii) we didn't fail to count any $f$.



      Remark. The "mysterious" $5!$ came from two sources: The product of the number $binom 51$ of $B_1$'s and the number $4$! of bijections from a $4$-member set to another.






      share|cite|improve this answer











      $endgroup$













        Your Answer








        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3180474%2fnumber-of-surjections-from-1-2-3-4-5-6-to-a-b-c-d-e%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        4












        $begingroup$

        How many ways can $A$ be partitioned into $5$ blocks?



        Answer: $binom62 = 15$



        Given any $5text-block$ partition of $A$, in how many ways can the blocks be bijectively
        assigned to the $5$ element set $B$?



        Answer: $5! =120$



        How many surjective functions from $A$ onto $B$ are there?



        Answer: $15 times 120 = 1800$






        share|cite|improve this answer









        $endgroup$

















          4












          $begingroup$

          How many ways can $A$ be partitioned into $5$ blocks?



          Answer: $binom62 = 15$



          Given any $5text-block$ partition of $A$, in how many ways can the blocks be bijectively
          assigned to the $5$ element set $B$?



          Answer: $5! =120$



          How many surjective functions from $A$ onto $B$ are there?



          Answer: $15 times 120 = 1800$






          share|cite|improve this answer









          $endgroup$















            4












            4








            4





            $begingroup$

            How many ways can $A$ be partitioned into $5$ blocks?



            Answer: $binom62 = 15$



            Given any $5text-block$ partition of $A$, in how many ways can the blocks be bijectively
            assigned to the $5$ element set $B$?



            Answer: $5! =120$



            How many surjective functions from $A$ onto $B$ are there?



            Answer: $15 times 120 = 1800$






            share|cite|improve this answer









            $endgroup$



            How many ways can $A$ be partitioned into $5$ blocks?



            Answer: $binom62 = 15$



            Given any $5text-block$ partition of $A$, in how many ways can the blocks be bijectively
            assigned to the $5$ element set $B$?



            Answer: $5! =120$



            How many surjective functions from $A$ onto $B$ are there?



            Answer: $15 times 120 = 1800$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Apr 9 at 2:48









            CopyPasteItCopyPasteIt

            4,3571828




            4,3571828





















                4












                $begingroup$

                Think of it this way:



                There is a pair of terms that get mapped to the same element. Call that pair $alpha $. There are four terms remaining. Call them $beta,gamma,delta$ and $epsilon $.



                There are $6choose 2 $ possible pairs that can be $alpha $.



                And we must map $alpha,beta,gamma,delta,epsilon $ to $a,b,c,d,e $. There is $5! $ ways to do that.






                share|cite|improve this answer









                $endgroup$

















                  4












                  $begingroup$

                  Think of it this way:



                  There is a pair of terms that get mapped to the same element. Call that pair $alpha $. There are four terms remaining. Call them $beta,gamma,delta$ and $epsilon $.



                  There are $6choose 2 $ possible pairs that can be $alpha $.



                  And we must map $alpha,beta,gamma,delta,epsilon $ to $a,b,c,d,e $. There is $5! $ ways to do that.






                  share|cite|improve this answer









                  $endgroup$















                    4












                    4








                    4





                    $begingroup$

                    Think of it this way:



                    There is a pair of terms that get mapped to the same element. Call that pair $alpha $. There are four terms remaining. Call them $beta,gamma,delta$ and $epsilon $.



                    There are $6choose 2 $ possible pairs that can be $alpha $.



                    And we must map $alpha,beta,gamma,delta,epsilon $ to $a,b,c,d,e $. There is $5! $ ways to do that.






                    share|cite|improve this answer









                    $endgroup$



                    Think of it this way:



                    There is a pair of terms that get mapped to the same element. Call that pair $alpha $. There are four terms remaining. Call them $beta,gamma,delta$ and $epsilon $.



                    There are $6choose 2 $ possible pairs that can be $alpha $.



                    And we must map $alpha,beta,gamma,delta,epsilon $ to $a,b,c,d,e $. There is $5! $ ways to do that.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Apr 9 at 2:59









                    fleabloodfleablood

                    1




                    1





















                        0












                        $begingroup$

                        (i). Select a $2$-member $A_1subset A.$ There are $binom 62$ ways to do this. Select a $1$-member $B_1subset B.$ There are $binom 51$ ways to do this. There are $binom 62binom 51$ such pairs $(A_1,B_1)$ and for each pair there is a set $F(A_1,B_1)$ of $4!$ surjections $f:Ato B$ such that $f(x):xin A_1=B_1.$



                        And if $(A_1, B_1)ne (A'_1, B'_1)$ then the sets $F(A_1,B_1), F(A'_1,B'_1)$ are disjoint.



                        So there are at least $binom 62binom 514!=(15)(5)(4!)=(15)(5!)=1800$ surjections.



                        (ii). Every surjection $f:Ato B$ belongs to some $F(A_1,B_1)$ so there are at most $1800$ surjections.



                        In other words: (i) we didn't count any $f$ more than once, and (ii) we didn't fail to count any $f$.



                        Remark. The "mysterious" $5!$ came from two sources: The product of the number $binom 51$ of $B_1$'s and the number $4$! of bijections from a $4$-member set to another.






                        share|cite|improve this answer











                        $endgroup$

















                          0












                          $begingroup$

                          (i). Select a $2$-member $A_1subset A.$ There are $binom 62$ ways to do this. Select a $1$-member $B_1subset B.$ There are $binom 51$ ways to do this. There are $binom 62binom 51$ such pairs $(A_1,B_1)$ and for each pair there is a set $F(A_1,B_1)$ of $4!$ surjections $f:Ato B$ such that $f(x):xin A_1=B_1.$



                          And if $(A_1, B_1)ne (A'_1, B'_1)$ then the sets $F(A_1,B_1), F(A'_1,B'_1)$ are disjoint.



                          So there are at least $binom 62binom 514!=(15)(5)(4!)=(15)(5!)=1800$ surjections.



                          (ii). Every surjection $f:Ato B$ belongs to some $F(A_1,B_1)$ so there are at most $1800$ surjections.



                          In other words: (i) we didn't count any $f$ more than once, and (ii) we didn't fail to count any $f$.



                          Remark. The "mysterious" $5!$ came from two sources: The product of the number $binom 51$ of $B_1$'s and the number $4$! of bijections from a $4$-member set to another.






                          share|cite|improve this answer











                          $endgroup$















                            0












                            0








                            0





                            $begingroup$

                            (i). Select a $2$-member $A_1subset A.$ There are $binom 62$ ways to do this. Select a $1$-member $B_1subset B.$ There are $binom 51$ ways to do this. There are $binom 62binom 51$ such pairs $(A_1,B_1)$ and for each pair there is a set $F(A_1,B_1)$ of $4!$ surjections $f:Ato B$ such that $f(x):xin A_1=B_1.$



                            And if $(A_1, B_1)ne (A'_1, B'_1)$ then the sets $F(A_1,B_1), F(A'_1,B'_1)$ are disjoint.



                            So there are at least $binom 62binom 514!=(15)(5)(4!)=(15)(5!)=1800$ surjections.



                            (ii). Every surjection $f:Ato B$ belongs to some $F(A_1,B_1)$ so there are at most $1800$ surjections.



                            In other words: (i) we didn't count any $f$ more than once, and (ii) we didn't fail to count any $f$.



                            Remark. The "mysterious" $5!$ came from two sources: The product of the number $binom 51$ of $B_1$'s and the number $4$! of bijections from a $4$-member set to another.






                            share|cite|improve this answer











                            $endgroup$



                            (i). Select a $2$-member $A_1subset A.$ There are $binom 62$ ways to do this. Select a $1$-member $B_1subset B.$ There are $binom 51$ ways to do this. There are $binom 62binom 51$ such pairs $(A_1,B_1)$ and for each pair there is a set $F(A_1,B_1)$ of $4!$ surjections $f:Ato B$ such that $f(x):xin A_1=B_1.$



                            And if $(A_1, B_1)ne (A'_1, B'_1)$ then the sets $F(A_1,B_1), F(A'_1,B'_1)$ are disjoint.



                            So there are at least $binom 62binom 514!=(15)(5)(4!)=(15)(5!)=1800$ surjections.



                            (ii). Every surjection $f:Ato B$ belongs to some $F(A_1,B_1)$ so there are at most $1800$ surjections.



                            In other words: (i) we didn't count any $f$ more than once, and (ii) we didn't fail to count any $f$.



                            Remark. The "mysterious" $5!$ came from two sources: The product of the number $binom 51$ of $B_1$'s and the number $4$! of bijections from a $4$-member set to another.







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Apr 9 at 6:32

























                            answered Apr 9 at 6:07









                            DanielWainfleetDanielWainfleet

                            35.8k31648




                            35.8k31648



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3180474%2fnumber-of-surjections-from-1-2-3-4-5-6-to-a-b-c-d-e%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                getting Checkpoint VPN SSL Network Extender working in the command lineHow to connect to CheckPoint VPN on Ubuntu 18.04LTS?Will the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayVPN SSL Network Extender in FirefoxLinux Checkpoint SNX tool configuration issuesCheck Point - Connect under Linux - snx + OTPSNX VPN Ububuntu 18.XXUsing Checkpoint VPN SSL Network Extender CLI with certificateVPN with network manager (nm-applet) is not workingWill the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayImport VPN config files to NetworkManager from command lineTrouble connecting to VPN using network-manager, while command line worksStart a VPN connection with PPTP protocol on command linestarting a docker service daemon breaks the vpn networkCan't connect to vpn with Network-managerVPN SSL Network Extender in FirefoxUsing Checkpoint VPN SSL Network Extender CLI with certificate

                                Cannot Extend partition with GParted The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Community Moderator Election ResultsCan't increase partition size with GParted?GParted doesn't recognize the unallocated space after my current partitionWhat is the best way to add unallocated space located before to Ubuntu 12.04 partition with GParted live?I can't figure out how to extend my Arch home partition into free spaceGparted Linux Mint 18.1 issueTrying to extend but swap partition is showing as Unknown in Gparted, shows proper from fdiskRearrange partitions in gparted to extend a partitionUnable to extend partition even though unallocated space is next to it using GPartedAllocate free space to root partitiongparted: how to merge unallocated space with a partition

                                Marilyn Monroe Ny fiainany manokana | Jereo koa | Meny fitetezanafanitarana azy.