Is $sqrtsin x$ periodic? The Next CEO of Stack OverflowIs $f(x)=sin(x^2)$ periodic?Composition of Periodic Functions.How to determine the periods of a periodic function?Riemann Integrals and Periodic Functionssolving $a = sqrtb + x + sqrtc + x$ for $x$is $sqrtx$ always positive?Sum of periodic functionsPeriodic solution: ODEPeriodic primitiveWhen is $f(t) = sin(omega_1 t)+sin(omega_2 t)$ periodic?

Is it possible to make a 9x9 table fit within the default margins?

Small nick on power cord from an electric alarm clock, and copper wiring exposed but intact

How to implement Comparable so it is consistent with identity-equality

How to pronounce fünf in 45

How dangerous is XSS

Calculate the Mean mean of two numbers

Ising model simulation

Shortening a title without changing its meaning

What day is it again?

Are British MPs missing the point, with these 'Indicative Votes'?

Find the majority element, which appears more than half the time

Can I cast Thunderwave and be at the center of its bottom face, but not be affected by it?

My boss doesn't want me to have a side project

How do I secure a TV wall mount?

Find a path from s to t using as few red nodes as possible

Horror film about a man brought out of cryogenic suspension without a soul, around 1990

Is it a bad idea to plug the other end of ESD strap to wall ground?

Car headlights in a world without electricity

Is it OK to decorate a log book cover?

Direct Implications Between USA and UK in Event of No-Deal Brexit

Can a PhD from a non-TU9 German university become a professor in a TU9 university?

Read/write a pipe-delimited file line by line with some simple text manipulation

Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?

Do I need to write [sic] when including a quotation with a number less than 10 that isn't written out?



Is $sqrtsin x$ periodic?



The Next CEO of Stack OverflowIs $f(x)=sin(x^2)$ periodic?Composition of Periodic Functions.How to determine the periods of a periodic function?Riemann Integrals and Periodic Functionssolving $a = sqrtb + x + sqrtc + x$ for $x$is $sqrtx$ always positive?Sum of periodic functionsPeriodic solution: ODEPeriodic primitiveWhen is $f(t) = sin(omega_1 t)+sin(omega_2 t)$ periodic?










7












$begingroup$


$sin^2(x)$ has period $pi$ but it seems to me $sqrtsin x$ is not periodic since inside square root has to be positive and when it is negative, it is not defined.



Does it creates problem for periodicity? Can we say square root of the periodic function need to be periodic? Thanks for your help.



enter image description here



This is graph of the $sqrtsin x$ above.










share|cite|improve this question











$endgroup$







  • 7




    $begingroup$
    Well, it's periodic where it is defined. That's something!
    $endgroup$
    – lulu
    2 days ago










  • $begingroup$
    You could ask the same question of $tan(x)$, because it's not defined at odd multiples of $pi/2$.
    $endgroup$
    – Barry Cipra
    yesterday















7












$begingroup$


$sin^2(x)$ has period $pi$ but it seems to me $sqrtsin x$ is not periodic since inside square root has to be positive and when it is negative, it is not defined.



Does it creates problem for periodicity? Can we say square root of the periodic function need to be periodic? Thanks for your help.



enter image description here



This is graph of the $sqrtsin x$ above.










share|cite|improve this question











$endgroup$







  • 7




    $begingroup$
    Well, it's periodic where it is defined. That's something!
    $endgroup$
    – lulu
    2 days ago










  • $begingroup$
    You could ask the same question of $tan(x)$, because it's not defined at odd multiples of $pi/2$.
    $endgroup$
    – Barry Cipra
    yesterday













7












7








7





$begingroup$


$sin^2(x)$ has period $pi$ but it seems to me $sqrtsin x$ is not periodic since inside square root has to be positive and when it is negative, it is not defined.



Does it creates problem for periodicity? Can we say square root of the periodic function need to be periodic? Thanks for your help.



enter image description here



This is graph of the $sqrtsin x$ above.










share|cite|improve this question











$endgroup$




$sin^2(x)$ has period $pi$ but it seems to me $sqrtsin x$ is not periodic since inside square root has to be positive and when it is negative, it is not defined.



Does it creates problem for periodicity? Can we say square root of the periodic function need to be periodic? Thanks for your help.



enter image description here



This is graph of the $sqrtsin x$ above.







calculus functions radicals periodic-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago









user21820

39.9k544159




39.9k544159










asked 2 days ago









izaagizaag

416210




416210







  • 7




    $begingroup$
    Well, it's periodic where it is defined. That's something!
    $endgroup$
    – lulu
    2 days ago










  • $begingroup$
    You could ask the same question of $tan(x)$, because it's not defined at odd multiples of $pi/2$.
    $endgroup$
    – Barry Cipra
    yesterday












  • 7




    $begingroup$
    Well, it's periodic where it is defined. That's something!
    $endgroup$
    – lulu
    2 days ago










  • $begingroup$
    You could ask the same question of $tan(x)$, because it's not defined at odd multiples of $pi/2$.
    $endgroup$
    – Barry Cipra
    yesterday







7




7




$begingroup$
Well, it's periodic where it is defined. That's something!
$endgroup$
– lulu
2 days ago




$begingroup$
Well, it's periodic where it is defined. That's something!
$endgroup$
– lulu
2 days ago












$begingroup$
You could ask the same question of $tan(x)$, because it's not defined at odd multiples of $pi/2$.
$endgroup$
– Barry Cipra
yesterday




$begingroup$
You could ask the same question of $tan(x)$, because it's not defined at odd multiples of $pi/2$.
$endgroup$
– Barry Cipra
yesterday










3 Answers
3






active

oldest

votes


















9












$begingroup$

The function $sqrtsin x$ is periodic. If you want (but don't do it in public) think of "undefined" as a real number. Then if $sin x$ is negative, you have $$sqrtsin x = mbox undefined =sqrtsin(x+2pi).$$



Or you can extend to the complex numbers and you'll have periodicity everywhere.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Now we just need to choose how to define $sqrtz$ in general, but that's doable.
    $endgroup$
    – J.G.
    yesterday


















7












$begingroup$

$f$ is periodic, if there is a positive real number $p $ (the period) such that for every $x$ from the domain of $f$ the value of $x$ is the same as value of $(x+p)$ - more formal and more exactly:



$$f text is periodic iffexists p>0: forall x in D(f): x+p in D(f) land f(x) = f(x+p)$$



For the function $g = sqrt f$ of a periodic function $f$ obviously $$x in D(g) iff x + k in D(g)$$



(because $x in D(g) iff f(x) ge 0 iff f(x+k)=f(x) ge 0 $)



and



$$f(x) = f(x+p),$$



so the square root of a periodic function is a periodic one, too.






share|cite|improve this answer











$endgroup$




















    3












    $begingroup$

    If a function $f$ is periodic, then there exists $kne0$ such that $f(x)=f(x+k)$ for all $xinmathbbR$. So if $g$ is its square root, we have
    $$g(x)=sqrtf(x)=sqrtf(x+k)=g(x+k).$$
    And, hence, $g$ is also periodic. BUT note that the square root is only defined in the intervals in which $f$ is nonnegative. Out of them, $g$ is not periodic because it is not even defined.






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168281%2fis-sqrt-sin-x-periodic%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      9












      $begingroup$

      The function $sqrtsin x$ is periodic. If you want (but don't do it in public) think of "undefined" as a real number. Then if $sin x$ is negative, you have $$sqrtsin x = mbox undefined =sqrtsin(x+2pi).$$



      Or you can extend to the complex numbers and you'll have periodicity everywhere.






      share|cite|improve this answer









      $endgroup$












      • $begingroup$
        Now we just need to choose how to define $sqrtz$ in general, but that's doable.
        $endgroup$
        – J.G.
        yesterday















      9












      $begingroup$

      The function $sqrtsin x$ is periodic. If you want (but don't do it in public) think of "undefined" as a real number. Then if $sin x$ is negative, you have $$sqrtsin x = mbox undefined =sqrtsin(x+2pi).$$



      Or you can extend to the complex numbers and you'll have periodicity everywhere.






      share|cite|improve this answer









      $endgroup$












      • $begingroup$
        Now we just need to choose how to define $sqrtz$ in general, but that's doable.
        $endgroup$
        – J.G.
        yesterday













      9












      9








      9





      $begingroup$

      The function $sqrtsin x$ is periodic. If you want (but don't do it in public) think of "undefined" as a real number. Then if $sin x$ is negative, you have $$sqrtsin x = mbox undefined =sqrtsin(x+2pi).$$



      Or you can extend to the complex numbers and you'll have periodicity everywhere.






      share|cite|improve this answer









      $endgroup$



      The function $sqrtsin x$ is periodic. If you want (but don't do it in public) think of "undefined" as a real number. Then if $sin x$ is negative, you have $$sqrtsin x = mbox undefined =sqrtsin(x+2pi).$$



      Or you can extend to the complex numbers and you'll have periodicity everywhere.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered 2 days ago









      B. GoddardB. Goddard

      20k21442




      20k21442











      • $begingroup$
        Now we just need to choose how to define $sqrtz$ in general, but that's doable.
        $endgroup$
        – J.G.
        yesterday
















      • $begingroup$
        Now we just need to choose how to define $sqrtz$ in general, but that's doable.
        $endgroup$
        – J.G.
        yesterday















      $begingroup$
      Now we just need to choose how to define $sqrtz$ in general, but that's doable.
      $endgroup$
      – J.G.
      yesterday




      $begingroup$
      Now we just need to choose how to define $sqrtz$ in general, but that's doable.
      $endgroup$
      – J.G.
      yesterday











      7












      $begingroup$

      $f$ is periodic, if there is a positive real number $p $ (the period) such that for every $x$ from the domain of $f$ the value of $x$ is the same as value of $(x+p)$ - more formal and more exactly:



      $$f text is periodic iffexists p>0: forall x in D(f): x+p in D(f) land f(x) = f(x+p)$$



      For the function $g = sqrt f$ of a periodic function $f$ obviously $$x in D(g) iff x + k in D(g)$$



      (because $x in D(g) iff f(x) ge 0 iff f(x+k)=f(x) ge 0 $)



      and



      $$f(x) = f(x+p),$$



      so the square root of a periodic function is a periodic one, too.






      share|cite|improve this answer











      $endgroup$

















        7












        $begingroup$

        $f$ is periodic, if there is a positive real number $p $ (the period) such that for every $x$ from the domain of $f$ the value of $x$ is the same as value of $(x+p)$ - more formal and more exactly:



        $$f text is periodic iffexists p>0: forall x in D(f): x+p in D(f) land f(x) = f(x+p)$$



        For the function $g = sqrt f$ of a periodic function $f$ obviously $$x in D(g) iff x + k in D(g)$$



        (because $x in D(g) iff f(x) ge 0 iff f(x+k)=f(x) ge 0 $)



        and



        $$f(x) = f(x+p),$$



        so the square root of a periodic function is a periodic one, too.






        share|cite|improve this answer











        $endgroup$















          7












          7








          7





          $begingroup$

          $f$ is periodic, if there is a positive real number $p $ (the period) such that for every $x$ from the domain of $f$ the value of $x$ is the same as value of $(x+p)$ - more formal and more exactly:



          $$f text is periodic iffexists p>0: forall x in D(f): x+p in D(f) land f(x) = f(x+p)$$



          For the function $g = sqrt f$ of a periodic function $f$ obviously $$x in D(g) iff x + k in D(g)$$



          (because $x in D(g) iff f(x) ge 0 iff f(x+k)=f(x) ge 0 $)



          and



          $$f(x) = f(x+p),$$



          so the square root of a periodic function is a periodic one, too.






          share|cite|improve this answer











          $endgroup$



          $f$ is periodic, if there is a positive real number $p $ (the period) such that for every $x$ from the domain of $f$ the value of $x$ is the same as value of $(x+p)$ - more formal and more exactly:



          $$f text is periodic iffexists p>0: forall x in D(f): x+p in D(f) land f(x) = f(x+p)$$



          For the function $g = sqrt f$ of a periodic function $f$ obviously $$x in D(g) iff x + k in D(g)$$



          (because $x in D(g) iff f(x) ge 0 iff f(x+k)=f(x) ge 0 $)



          and



          $$f(x) = f(x+p),$$



          so the square root of a periodic function is a periodic one, too.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 2 days ago

























          answered 2 days ago









          MarianDMarianD

          1,9741617




          1,9741617





















              3












              $begingroup$

              If a function $f$ is periodic, then there exists $kne0$ such that $f(x)=f(x+k)$ for all $xinmathbbR$. So if $g$ is its square root, we have
              $$g(x)=sqrtf(x)=sqrtf(x+k)=g(x+k).$$
              And, hence, $g$ is also periodic. BUT note that the square root is only defined in the intervals in which $f$ is nonnegative. Out of them, $g$ is not periodic because it is not even defined.






              share|cite|improve this answer











              $endgroup$

















                3












                $begingroup$

                If a function $f$ is periodic, then there exists $kne0$ such that $f(x)=f(x+k)$ for all $xinmathbbR$. So if $g$ is its square root, we have
                $$g(x)=sqrtf(x)=sqrtf(x+k)=g(x+k).$$
                And, hence, $g$ is also periodic. BUT note that the square root is only defined in the intervals in which $f$ is nonnegative. Out of them, $g$ is not periodic because it is not even defined.






                share|cite|improve this answer











                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  If a function $f$ is periodic, then there exists $kne0$ such that $f(x)=f(x+k)$ for all $xinmathbbR$. So if $g$ is its square root, we have
                  $$g(x)=sqrtf(x)=sqrtf(x+k)=g(x+k).$$
                  And, hence, $g$ is also periodic. BUT note that the square root is only defined in the intervals in which $f$ is nonnegative. Out of them, $g$ is not periodic because it is not even defined.






                  share|cite|improve this answer











                  $endgroup$



                  If a function $f$ is periodic, then there exists $kne0$ such that $f(x)=f(x+k)$ for all $xinmathbbR$. So if $g$ is its square root, we have
                  $$g(x)=sqrtf(x)=sqrtf(x+k)=g(x+k).$$
                  And, hence, $g$ is also periodic. BUT note that the square root is only defined in the intervals in which $f$ is nonnegative. Out of them, $g$ is not periodic because it is not even defined.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited yesterday

























                  answered 2 days ago









                  AugSBAugSB

                  3,42921734




                  3,42921734



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168281%2fis-sqrt-sin-x-periodic%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      getting Checkpoint VPN SSL Network Extender working in the command lineHow to connect to CheckPoint VPN on Ubuntu 18.04LTS?Will the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayVPN SSL Network Extender in FirefoxLinux Checkpoint SNX tool configuration issuesCheck Point - Connect under Linux - snx + OTPSNX VPN Ububuntu 18.XXUsing Checkpoint VPN SSL Network Extender CLI with certificateVPN with network manager (nm-applet) is not workingWill the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayImport VPN config files to NetworkManager from command lineTrouble connecting to VPN using network-manager, while command line worksStart a VPN connection with PPTP protocol on command linestarting a docker service daemon breaks the vpn networkCan't connect to vpn with Network-managerVPN SSL Network Extender in FirefoxUsing Checkpoint VPN SSL Network Extender CLI with certificate

                      Cannot Extend partition with GParted The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Community Moderator Election ResultsCan't increase partition size with GParted?GParted doesn't recognize the unallocated space after my current partitionWhat is the best way to add unallocated space located before to Ubuntu 12.04 partition with GParted live?I can't figure out how to extend my Arch home partition into free spaceGparted Linux Mint 18.1 issueTrying to extend but swap partition is showing as Unknown in Gparted, shows proper from fdiskRearrange partitions in gparted to extend a partitionUnable to extend partition even though unallocated space is next to it using GPartedAllocate free space to root partitiongparted: how to merge unallocated space with a partition

                      Marilyn Monroe Ny fiainany manokana | Jereo koa | Meny fitetezanafanitarana azy.