Some questions about different axiomatic systems for neighbourhoods The Next CEO of Stack OverflowDefinition of a Topology through neighbourhood basis?Characterization of TopologyOrigins of the modern definition of topologyWhich separation axiom?Topology and locally closed subsetsProving a injectivity in a separable Hausdorff space.Is Hausdorffness characterisable by the uniqueness of the limits?Is the projection on a product topology surjective?Proving the Product Topology does define a topologyHausdorff space in which every point has a compact neighbourhood is compactly generatedProof on trivial topological spaceUnion of Boundaries Formula

Avoiding the "not like other girls" trope?

Is a distribution that is normal, but highly skewed, considered Gaussian?

Which acid/base does a strong base/acid react when added to a buffer solution?

A hang glider, sudden unexpected lift to 25,000 feet altitude, what could do this?

Car headlights in a world without electricity

Small nick on power cord from an electric alarm clock, and copper wiring exposed but intact

How to show a landlord what we have in savings?

Can you teleport closer to a creature you are Frightened of?

How should I connect my cat5 cable to connectors having an orange-green line?

Ising model simulation

How can I prove that a state of equilibrium is unstable?

How to compactly explain secondary and tertiary characters without resorting to stereotypes?

Is it possible to make a 9x9 table fit within the default margins?

What is a typical Mizrachi Seder like?

Identify and count spells (Distinctive events within each group)

"Eavesdropping" vs "Listen in on"

Find a path from s to t using as few red nodes as possible

Why do we say “un seul M” and not “une seule M” even though M is a “consonne”?

How can I separate the number from the unit in argument?

Is it OK to decorate a log book cover?

Calculating discount not working

Are British MPs missing the point, with these 'Indicative Votes'?

Strange use of "whether ... than ..." in official text

Does the Idaho Potato Commission associate potato skins with healthy eating?



Some questions about different axiomatic systems for neighbourhoods



The Next CEO of Stack OverflowDefinition of a Topology through neighbourhood basis?Characterization of TopologyOrigins of the modern definition of topologyWhich separation axiom?Topology and locally closed subsetsProving a injectivity in a separable Hausdorff space.Is Hausdorffness characterisable by the uniqueness of the limits?Is the projection on a product topology surjective?Proving the Product Topology does define a topologyHausdorff space in which every point has a compact neighbourhood is compactly generatedProof on trivial topological spaceUnion of Boundaries Formula










4












$begingroup$


I was thinking a few days ago about the development of topology, especially how you arrive at the concept of a topology $tau$. I knew that a lot of initial ideas came from Hausdorff who defined a topological space by giving neighbourhood axioms; so I had a look at the original text ,,Grundzüge der Mengenlehre'' to see how his definition compares to the contemporary one.



Here is a translation of the ,,Umgebungsaxiome'' that Hausdorff gives:




$(A)~$ To every point $x$, there is some neighbourhood $U_x$; every neighbourhood $U_x$ contains the point $x$.



$(B)~$ If $U_x,V_x$ are two neighbourhoods of the same point $x$, there is a neighbourhood $W_x$, which is in both of them ($W_x subseteq U_x cap V_x$).



$(C)~$ If the point $y$ lies in $U_x$, there is a neighbourhood $U_y$, which is a subset of $U_x$ ($U_y subseteq U_x$).



$(D)~$ For two different points $x,y$ there exist two neighbourhoods $U_x, U_y$ with no common points ($U_x cap U_y = emptyset$).




and here is a version of the neighbourhood axioms you might find in a modern textbook




$mathcalN(x)$ is a set of neighbourhoods for $x$ iff
beginalign*
(0)&~~~ x in bigcap mathcalN(x) \
(1)&~~~ X in mathcalN(x) \
(2)&~~~ forall ~U_1,U_2 in mathcalN(x) : ~ U_1 cap U_2 in mathcalN(x) \
(3)&~~~ forall~ U subseteq X ~~forall~ N in mathcalN(x):~ N subseteq U Longrightarrow U in mathcalN(x) \
(4)&~~~ forall~ U in mathcalN(x) ~~exists~ V in mathcalN(x)~ forall p in V :~ U in mathcalN(p)
endalign*





Here are a few questions I still have after reading and thinking about it:




$(i)$ Are these axiomatic systems equivalent? Even leaving out axiom $(D)$ (since it says that the space is $T_2$) it does not seem to me that they are. A few of them clearly are equivalent, but I don't see how you could derive $(3)$ from $(A) - (C)$. I could at least imagine that one was added over time, which would explain the problem.



$(ii)$ What is the use of axiom $(4)$? I think most helpful to me would be an example of a proof in which the axiom is indispensable.



$(iii)$ (more historically minded question) How did the word ,,Umgebung'' ended up being translated to neighbourhood?




Hausdorff calls a set $U_x$ a ,,Umgebung'' of $x$ which in English (at least in the mathematical literature) is called a neighbourhood. This is quite strange, since neighbourhood has a direct translation to the German: ,,Nachbarschaft'' whose meaning is quite different from the one of ,,Umgebung''. I my opinion the later would be better translated by the word surrounding. Which makes me curious how the translation came about.










share|cite|improve this question









$endgroup$







  • 3




    $begingroup$
    Neighbourhood in English means "area around someone, close to someone", not being a neighbour, so Umgebung is quite equivalent. In Dutch we also say "omgeving". There is no etymologically close English equivalent to Umgebung AFAIK.
    $endgroup$
    – Henno Brandsma
    2 days ago
















4












$begingroup$


I was thinking a few days ago about the development of topology, especially how you arrive at the concept of a topology $tau$. I knew that a lot of initial ideas came from Hausdorff who defined a topological space by giving neighbourhood axioms; so I had a look at the original text ,,Grundzüge der Mengenlehre'' to see how his definition compares to the contemporary one.



Here is a translation of the ,,Umgebungsaxiome'' that Hausdorff gives:




$(A)~$ To every point $x$, there is some neighbourhood $U_x$; every neighbourhood $U_x$ contains the point $x$.



$(B)~$ If $U_x,V_x$ are two neighbourhoods of the same point $x$, there is a neighbourhood $W_x$, which is in both of them ($W_x subseteq U_x cap V_x$).



$(C)~$ If the point $y$ lies in $U_x$, there is a neighbourhood $U_y$, which is a subset of $U_x$ ($U_y subseteq U_x$).



$(D)~$ For two different points $x,y$ there exist two neighbourhoods $U_x, U_y$ with no common points ($U_x cap U_y = emptyset$).




and here is a version of the neighbourhood axioms you might find in a modern textbook




$mathcalN(x)$ is a set of neighbourhoods for $x$ iff
beginalign*
(0)&~~~ x in bigcap mathcalN(x) \
(1)&~~~ X in mathcalN(x) \
(2)&~~~ forall ~U_1,U_2 in mathcalN(x) : ~ U_1 cap U_2 in mathcalN(x) \
(3)&~~~ forall~ U subseteq X ~~forall~ N in mathcalN(x):~ N subseteq U Longrightarrow U in mathcalN(x) \
(4)&~~~ forall~ U in mathcalN(x) ~~exists~ V in mathcalN(x)~ forall p in V :~ U in mathcalN(p)
endalign*





Here are a few questions I still have after reading and thinking about it:




$(i)$ Are these axiomatic systems equivalent? Even leaving out axiom $(D)$ (since it says that the space is $T_2$) it does not seem to me that they are. A few of them clearly are equivalent, but I don't see how you could derive $(3)$ from $(A) - (C)$. I could at least imagine that one was added over time, which would explain the problem.



$(ii)$ What is the use of axiom $(4)$? I think most helpful to me would be an example of a proof in which the axiom is indispensable.



$(iii)$ (more historically minded question) How did the word ,,Umgebung'' ended up being translated to neighbourhood?




Hausdorff calls a set $U_x$ a ,,Umgebung'' of $x$ which in English (at least in the mathematical literature) is called a neighbourhood. This is quite strange, since neighbourhood has a direct translation to the German: ,,Nachbarschaft'' whose meaning is quite different from the one of ,,Umgebung''. I my opinion the later would be better translated by the word surrounding. Which makes me curious how the translation came about.










share|cite|improve this question









$endgroup$







  • 3




    $begingroup$
    Neighbourhood in English means "area around someone, close to someone", not being a neighbour, so Umgebung is quite equivalent. In Dutch we also say "omgeving". There is no etymologically close English equivalent to Umgebung AFAIK.
    $endgroup$
    – Henno Brandsma
    2 days ago














4












4








4





$begingroup$


I was thinking a few days ago about the development of topology, especially how you arrive at the concept of a topology $tau$. I knew that a lot of initial ideas came from Hausdorff who defined a topological space by giving neighbourhood axioms; so I had a look at the original text ,,Grundzüge der Mengenlehre'' to see how his definition compares to the contemporary one.



Here is a translation of the ,,Umgebungsaxiome'' that Hausdorff gives:




$(A)~$ To every point $x$, there is some neighbourhood $U_x$; every neighbourhood $U_x$ contains the point $x$.



$(B)~$ If $U_x,V_x$ are two neighbourhoods of the same point $x$, there is a neighbourhood $W_x$, which is in both of them ($W_x subseteq U_x cap V_x$).



$(C)~$ If the point $y$ lies in $U_x$, there is a neighbourhood $U_y$, which is a subset of $U_x$ ($U_y subseteq U_x$).



$(D)~$ For two different points $x,y$ there exist two neighbourhoods $U_x, U_y$ with no common points ($U_x cap U_y = emptyset$).




and here is a version of the neighbourhood axioms you might find in a modern textbook




$mathcalN(x)$ is a set of neighbourhoods for $x$ iff
beginalign*
(0)&~~~ x in bigcap mathcalN(x) \
(1)&~~~ X in mathcalN(x) \
(2)&~~~ forall ~U_1,U_2 in mathcalN(x) : ~ U_1 cap U_2 in mathcalN(x) \
(3)&~~~ forall~ U subseteq X ~~forall~ N in mathcalN(x):~ N subseteq U Longrightarrow U in mathcalN(x) \
(4)&~~~ forall~ U in mathcalN(x) ~~exists~ V in mathcalN(x)~ forall p in V :~ U in mathcalN(p)
endalign*





Here are a few questions I still have after reading and thinking about it:




$(i)$ Are these axiomatic systems equivalent? Even leaving out axiom $(D)$ (since it says that the space is $T_2$) it does not seem to me that they are. A few of them clearly are equivalent, but I don't see how you could derive $(3)$ from $(A) - (C)$. I could at least imagine that one was added over time, which would explain the problem.



$(ii)$ What is the use of axiom $(4)$? I think most helpful to me would be an example of a proof in which the axiom is indispensable.



$(iii)$ (more historically minded question) How did the word ,,Umgebung'' ended up being translated to neighbourhood?




Hausdorff calls a set $U_x$ a ,,Umgebung'' of $x$ which in English (at least in the mathematical literature) is called a neighbourhood. This is quite strange, since neighbourhood has a direct translation to the German: ,,Nachbarschaft'' whose meaning is quite different from the one of ,,Umgebung''. I my opinion the later would be better translated by the word surrounding. Which makes me curious how the translation came about.










share|cite|improve this question









$endgroup$




I was thinking a few days ago about the development of topology, especially how you arrive at the concept of a topology $tau$. I knew that a lot of initial ideas came from Hausdorff who defined a topological space by giving neighbourhood axioms; so I had a look at the original text ,,Grundzüge der Mengenlehre'' to see how his definition compares to the contemporary one.



Here is a translation of the ,,Umgebungsaxiome'' that Hausdorff gives:




$(A)~$ To every point $x$, there is some neighbourhood $U_x$; every neighbourhood $U_x$ contains the point $x$.



$(B)~$ If $U_x,V_x$ are two neighbourhoods of the same point $x$, there is a neighbourhood $W_x$, which is in both of them ($W_x subseteq U_x cap V_x$).



$(C)~$ If the point $y$ lies in $U_x$, there is a neighbourhood $U_y$, which is a subset of $U_x$ ($U_y subseteq U_x$).



$(D)~$ For two different points $x,y$ there exist two neighbourhoods $U_x, U_y$ with no common points ($U_x cap U_y = emptyset$).




and here is a version of the neighbourhood axioms you might find in a modern textbook




$mathcalN(x)$ is a set of neighbourhoods for $x$ iff
beginalign*
(0)&~~~ x in bigcap mathcalN(x) \
(1)&~~~ X in mathcalN(x) \
(2)&~~~ forall ~U_1,U_2 in mathcalN(x) : ~ U_1 cap U_2 in mathcalN(x) \
(3)&~~~ forall~ U subseteq X ~~forall~ N in mathcalN(x):~ N subseteq U Longrightarrow U in mathcalN(x) \
(4)&~~~ forall~ U in mathcalN(x) ~~exists~ V in mathcalN(x)~ forall p in V :~ U in mathcalN(p)
endalign*





Here are a few questions I still have after reading and thinking about it:




$(i)$ Are these axiomatic systems equivalent? Even leaving out axiom $(D)$ (since it says that the space is $T_2$) it does not seem to me that they are. A few of them clearly are equivalent, but I don't see how you could derive $(3)$ from $(A) - (C)$. I could at least imagine that one was added over time, which would explain the problem.



$(ii)$ What is the use of axiom $(4)$? I think most helpful to me would be an example of a proof in which the axiom is indispensable.



$(iii)$ (more historically minded question) How did the word ,,Umgebung'' ended up being translated to neighbourhood?




Hausdorff calls a set $U_x$ a ,,Umgebung'' of $x$ which in English (at least in the mathematical literature) is called a neighbourhood. This is quite strange, since neighbourhood has a direct translation to the German: ,,Nachbarschaft'' whose meaning is quite different from the one of ,,Umgebung''. I my opinion the later would be better translated by the word surrounding. Which makes me curious how the translation came about.







general-topology math-history axioms






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 2 days ago









NemoNemo

854519




854519







  • 3




    $begingroup$
    Neighbourhood in English means "area around someone, close to someone", not being a neighbour, so Umgebung is quite equivalent. In Dutch we also say "omgeving". There is no etymologically close English equivalent to Umgebung AFAIK.
    $endgroup$
    – Henno Brandsma
    2 days ago













  • 3




    $begingroup$
    Neighbourhood in English means "area around someone, close to someone", not being a neighbour, so Umgebung is quite equivalent. In Dutch we also say "omgeving". There is no etymologically close English equivalent to Umgebung AFAIK.
    $endgroup$
    – Henno Brandsma
    2 days ago








3




3




$begingroup$
Neighbourhood in English means "area around someone, close to someone", not being a neighbour, so Umgebung is quite equivalent. In Dutch we also say "omgeving". There is no etymologically close English equivalent to Umgebung AFAIK.
$endgroup$
– Henno Brandsma
2 days ago





$begingroup$
Neighbourhood in English means "area around someone, close to someone", not being a neighbour, so Umgebung is quite equivalent. In Dutch we also say "omgeving". There is no etymologically close English equivalent to Umgebung AFAIK.
$endgroup$
– Henno Brandsma
2 days ago











2 Answers
2






active

oldest

votes


















7












$begingroup$

Hausdorff axiomatises a set of "basic open neighbourhoods" of $x$ essentially, while the other one axiomatises the more general notion of neighbourhood ($N$ is a neighbourhood of $x$ iff there is an open subset $O$ with $x in O subseteq N$), which form a non-empty filter at each point (which is the summary of axioms (0)-(3) ) and (4) is needed to couple the different neighbourhood systems and make a link to openness: it essentially says that every neighbourhood contains an open neighbourhood (one that is a neighbourhood of each of its points), it ensures that when we define the topology in the usual way from the neighbourhood systems, that $mathcalN_x$ becomes exactly the set of neighbourhoods of $x$ in the newly defined topology too. I gave that proof in full on this site before. See this shorter one and this longer one, e.g.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Ah! Hasudorff axiomatising ,,basic open neighbourhoods'' was the point which I was clearly missing. The longer proof was also a great read!
    $endgroup$
    – Nemo
    22 hours ago


















3












$begingroup$

The axiom systems are not equivalent. By (C), every neighborhood $U_x$ is an open set. On the other hand, (3) implies that $mathcalN(x)$ is the family of all neighborhoods of $x$, and (4) assures that the members of $mathcalN(x)$ are indeed neighborhoods, i.e. contains $x$ in the interior. So the first system are axioms for (Hausdorff) open neighborhood base, while the second system are axioms for complete neighborhood system. There are also axioms for neighborhood base system, which are slightly weaker than both of these.



There are various similar axiom systems. In general, you have families of sets $mathcalN(x)$ for $x ∈ X$, and you want to induce a topology as follows: $U ⊆ X$ is open if and only if for every $x ∈ U$ there is $N ∈ mathcalN(x)$ such that $N ⊆ U$. There is a weak set of axioms that assures that this indeed induces a topology. But you may add more axioms if you want more properties like



  • each $N ∈ mathcalN(x)$ is a neighborhood of $x$ (this is not automatical);

  • each $N ∈ mathcalN(x)$ is open;

  • each neighborhood of $x$ is a memnber of $N ∈ mathcalN(x)$.





share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168569%2fsome-questions-about-different-axiomatic-systems-for-neighbourhoods%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    7












    $begingroup$

    Hausdorff axiomatises a set of "basic open neighbourhoods" of $x$ essentially, while the other one axiomatises the more general notion of neighbourhood ($N$ is a neighbourhood of $x$ iff there is an open subset $O$ with $x in O subseteq N$), which form a non-empty filter at each point (which is the summary of axioms (0)-(3) ) and (4) is needed to couple the different neighbourhood systems and make a link to openness: it essentially says that every neighbourhood contains an open neighbourhood (one that is a neighbourhood of each of its points), it ensures that when we define the topology in the usual way from the neighbourhood systems, that $mathcalN_x$ becomes exactly the set of neighbourhoods of $x$ in the newly defined topology too. I gave that proof in full on this site before. See this shorter one and this longer one, e.g.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Ah! Hasudorff axiomatising ,,basic open neighbourhoods'' was the point which I was clearly missing. The longer proof was also a great read!
      $endgroup$
      – Nemo
      22 hours ago















    7












    $begingroup$

    Hausdorff axiomatises a set of "basic open neighbourhoods" of $x$ essentially, while the other one axiomatises the more general notion of neighbourhood ($N$ is a neighbourhood of $x$ iff there is an open subset $O$ with $x in O subseteq N$), which form a non-empty filter at each point (which is the summary of axioms (0)-(3) ) and (4) is needed to couple the different neighbourhood systems and make a link to openness: it essentially says that every neighbourhood contains an open neighbourhood (one that is a neighbourhood of each of its points), it ensures that when we define the topology in the usual way from the neighbourhood systems, that $mathcalN_x$ becomes exactly the set of neighbourhoods of $x$ in the newly defined topology too. I gave that proof in full on this site before. See this shorter one and this longer one, e.g.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Ah! Hasudorff axiomatising ,,basic open neighbourhoods'' was the point which I was clearly missing. The longer proof was also a great read!
      $endgroup$
      – Nemo
      22 hours ago













    7












    7








    7





    $begingroup$

    Hausdorff axiomatises a set of "basic open neighbourhoods" of $x$ essentially, while the other one axiomatises the more general notion of neighbourhood ($N$ is a neighbourhood of $x$ iff there is an open subset $O$ with $x in O subseteq N$), which form a non-empty filter at each point (which is the summary of axioms (0)-(3) ) and (4) is needed to couple the different neighbourhood systems and make a link to openness: it essentially says that every neighbourhood contains an open neighbourhood (one that is a neighbourhood of each of its points), it ensures that when we define the topology in the usual way from the neighbourhood systems, that $mathcalN_x$ becomes exactly the set of neighbourhoods of $x$ in the newly defined topology too. I gave that proof in full on this site before. See this shorter one and this longer one, e.g.






    share|cite|improve this answer











    $endgroup$



    Hausdorff axiomatises a set of "basic open neighbourhoods" of $x$ essentially, while the other one axiomatises the more general notion of neighbourhood ($N$ is a neighbourhood of $x$ iff there is an open subset $O$ with $x in O subseteq N$), which form a non-empty filter at each point (which is the summary of axioms (0)-(3) ) and (4) is needed to couple the different neighbourhood systems and make a link to openness: it essentially says that every neighbourhood contains an open neighbourhood (one that is a neighbourhood of each of its points), it ensures that when we define the topology in the usual way from the neighbourhood systems, that $mathcalN_x$ becomes exactly the set of neighbourhoods of $x$ in the newly defined topology too. I gave that proof in full on this site before. See this shorter one and this longer one, e.g.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 2 days ago

























    answered 2 days ago









    Henno BrandsmaHenno Brandsma

    114k348124




    114k348124











    • $begingroup$
      Ah! Hasudorff axiomatising ,,basic open neighbourhoods'' was the point which I was clearly missing. The longer proof was also a great read!
      $endgroup$
      – Nemo
      22 hours ago
















    • $begingroup$
      Ah! Hasudorff axiomatising ,,basic open neighbourhoods'' was the point which I was clearly missing. The longer proof was also a great read!
      $endgroup$
      – Nemo
      22 hours ago















    $begingroup$
    Ah! Hasudorff axiomatising ,,basic open neighbourhoods'' was the point which I was clearly missing. The longer proof was also a great read!
    $endgroup$
    – Nemo
    22 hours ago




    $begingroup$
    Ah! Hasudorff axiomatising ,,basic open neighbourhoods'' was the point which I was clearly missing. The longer proof was also a great read!
    $endgroup$
    – Nemo
    22 hours ago











    3












    $begingroup$

    The axiom systems are not equivalent. By (C), every neighborhood $U_x$ is an open set. On the other hand, (3) implies that $mathcalN(x)$ is the family of all neighborhoods of $x$, and (4) assures that the members of $mathcalN(x)$ are indeed neighborhoods, i.e. contains $x$ in the interior. So the first system are axioms for (Hausdorff) open neighborhood base, while the second system are axioms for complete neighborhood system. There are also axioms for neighborhood base system, which are slightly weaker than both of these.



    There are various similar axiom systems. In general, you have families of sets $mathcalN(x)$ for $x ∈ X$, and you want to induce a topology as follows: $U ⊆ X$ is open if and only if for every $x ∈ U$ there is $N ∈ mathcalN(x)$ such that $N ⊆ U$. There is a weak set of axioms that assures that this indeed induces a topology. But you may add more axioms if you want more properties like



    • each $N ∈ mathcalN(x)$ is a neighborhood of $x$ (this is not automatical);

    • each $N ∈ mathcalN(x)$ is open;

    • each neighborhood of $x$ is a memnber of $N ∈ mathcalN(x)$.





    share|cite|improve this answer









    $endgroup$

















      3












      $begingroup$

      The axiom systems are not equivalent. By (C), every neighborhood $U_x$ is an open set. On the other hand, (3) implies that $mathcalN(x)$ is the family of all neighborhoods of $x$, and (4) assures that the members of $mathcalN(x)$ are indeed neighborhoods, i.e. contains $x$ in the interior. So the first system are axioms for (Hausdorff) open neighborhood base, while the second system are axioms for complete neighborhood system. There are also axioms for neighborhood base system, which are slightly weaker than both of these.



      There are various similar axiom systems. In general, you have families of sets $mathcalN(x)$ for $x ∈ X$, and you want to induce a topology as follows: $U ⊆ X$ is open if and only if for every $x ∈ U$ there is $N ∈ mathcalN(x)$ such that $N ⊆ U$. There is a weak set of axioms that assures that this indeed induces a topology. But you may add more axioms if you want more properties like



      • each $N ∈ mathcalN(x)$ is a neighborhood of $x$ (this is not automatical);

      • each $N ∈ mathcalN(x)$ is open;

      • each neighborhood of $x$ is a memnber of $N ∈ mathcalN(x)$.





      share|cite|improve this answer









      $endgroup$















        3












        3








        3





        $begingroup$

        The axiom systems are not equivalent. By (C), every neighborhood $U_x$ is an open set. On the other hand, (3) implies that $mathcalN(x)$ is the family of all neighborhoods of $x$, and (4) assures that the members of $mathcalN(x)$ are indeed neighborhoods, i.e. contains $x$ in the interior. So the first system are axioms for (Hausdorff) open neighborhood base, while the second system are axioms for complete neighborhood system. There are also axioms for neighborhood base system, which are slightly weaker than both of these.



        There are various similar axiom systems. In general, you have families of sets $mathcalN(x)$ for $x ∈ X$, and you want to induce a topology as follows: $U ⊆ X$ is open if and only if for every $x ∈ U$ there is $N ∈ mathcalN(x)$ such that $N ⊆ U$. There is a weak set of axioms that assures that this indeed induces a topology. But you may add more axioms if you want more properties like



        • each $N ∈ mathcalN(x)$ is a neighborhood of $x$ (this is not automatical);

        • each $N ∈ mathcalN(x)$ is open;

        • each neighborhood of $x$ is a memnber of $N ∈ mathcalN(x)$.





        share|cite|improve this answer









        $endgroup$



        The axiom systems are not equivalent. By (C), every neighborhood $U_x$ is an open set. On the other hand, (3) implies that $mathcalN(x)$ is the family of all neighborhoods of $x$, and (4) assures that the members of $mathcalN(x)$ are indeed neighborhoods, i.e. contains $x$ in the interior. So the first system are axioms for (Hausdorff) open neighborhood base, while the second system are axioms for complete neighborhood system. There are also axioms for neighborhood base system, which are slightly weaker than both of these.



        There are various similar axiom systems. In general, you have families of sets $mathcalN(x)$ for $x ∈ X$, and you want to induce a topology as follows: $U ⊆ X$ is open if and only if for every $x ∈ U$ there is $N ∈ mathcalN(x)$ such that $N ⊆ U$. There is a weak set of axioms that assures that this indeed induces a topology. But you may add more axioms if you want more properties like



        • each $N ∈ mathcalN(x)$ is a neighborhood of $x$ (this is not automatical);

        • each $N ∈ mathcalN(x)$ is open;

        • each neighborhood of $x$ is a memnber of $N ∈ mathcalN(x)$.






        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 2 days ago









        user87690user87690

        6,6511825




        6,6511825



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168569%2fsome-questions-about-different-axiomatic-systems-for-neighbourhoods%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            getting Checkpoint VPN SSL Network Extender working in the command lineHow to connect to CheckPoint VPN on Ubuntu 18.04LTS?Will the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayVPN SSL Network Extender in FirefoxLinux Checkpoint SNX tool configuration issuesCheck Point - Connect under Linux - snx + OTPSNX VPN Ububuntu 18.XXUsing Checkpoint VPN SSL Network Extender CLI with certificateVPN with network manager (nm-applet) is not workingWill the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayImport VPN config files to NetworkManager from command lineTrouble connecting to VPN using network-manager, while command line worksStart a VPN connection with PPTP protocol on command linestarting a docker service daemon breaks the vpn networkCan't connect to vpn with Network-managerVPN SSL Network Extender in FirefoxUsing Checkpoint VPN SSL Network Extender CLI with certificate

            Cannot Extend partition with GParted The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Community Moderator Election ResultsCan't increase partition size with GParted?GParted doesn't recognize the unallocated space after my current partitionWhat is the best way to add unallocated space located before to Ubuntu 12.04 partition with GParted live?I can't figure out how to extend my Arch home partition into free spaceGparted Linux Mint 18.1 issueTrying to extend but swap partition is showing as Unknown in Gparted, shows proper from fdiskRearrange partitions in gparted to extend a partitionUnable to extend partition even though unallocated space is next to it using GPartedAllocate free space to root partitiongparted: how to merge unallocated space with a partition

            Marilyn Monroe Ny fiainany manokana | Jereo koa | Meny fitetezanafanitarana azy.