Some questions about different axiomatic systems for neighbourhoods The Next CEO of Stack OverflowDefinition of a Topology through neighbourhood basis?Characterization of TopologyOrigins of the modern definition of topologyWhich separation axiom?Topology and locally closed subsetsProving a injectivity in a separable Hausdorff space.Is Hausdorffness characterisable by the uniqueness of the limits?Is the projection on a product topology surjective?Proving the Product Topology does define a topologyHausdorff space in which every point has a compact neighbourhood is compactly generatedProof on trivial topological spaceUnion of Boundaries Formula
Avoiding the "not like other girls" trope?
Is a distribution that is normal, but highly skewed, considered Gaussian?
Which acid/base does a strong base/acid react when added to a buffer solution?
A hang glider, sudden unexpected lift to 25,000 feet altitude, what could do this?
Car headlights in a world without electricity
Small nick on power cord from an electric alarm clock, and copper wiring exposed but intact
How to show a landlord what we have in savings?
Can you teleport closer to a creature you are Frightened of?
How should I connect my cat5 cable to connectors having an orange-green line?
Ising model simulation
How can I prove that a state of equilibrium is unstable?
How to compactly explain secondary and tertiary characters without resorting to stereotypes?
Is it possible to make a 9x9 table fit within the default margins?
What is a typical Mizrachi Seder like?
Identify and count spells (Distinctive events within each group)
"Eavesdropping" vs "Listen in on"
Find a path from s to t using as few red nodes as possible
Why do we say “un seul M” and not “une seule M” even though M is a “consonne”?
How can I separate the number from the unit in argument?
Is it OK to decorate a log book cover?
Calculating discount not working
Are British MPs missing the point, with these 'Indicative Votes'?
Strange use of "whether ... than ..." in official text
Does the Idaho Potato Commission associate potato skins with healthy eating?
Some questions about different axiomatic systems for neighbourhoods
The Next CEO of Stack OverflowDefinition of a Topology through neighbourhood basis?Characterization of TopologyOrigins of the modern definition of topologyWhich separation axiom?Topology and locally closed subsetsProving a injectivity in a separable Hausdorff space.Is Hausdorffness characterisable by the uniqueness of the limits?Is the projection on a product topology surjective?Proving the Product Topology does define a topologyHausdorff space in which every point has a compact neighbourhood is compactly generatedProof on trivial topological spaceUnion of Boundaries Formula
$begingroup$
I was thinking a few days ago about the development of topology, especially how you arrive at the concept of a topology $tau$. I knew that a lot of initial ideas came from Hausdorff who defined a topological space by giving neighbourhood axioms; so I had a look at the original text ,,Grundzüge der Mengenlehre'' to see how his definition compares to the contemporary one.
Here is a translation of the ,,Umgebungsaxiome'' that Hausdorff gives:
$(A)~$ To every point $x$, there is some neighbourhood $U_x$; every neighbourhood $U_x$ contains the point $x$.
$(B)~$ If $U_x,V_x$ are two neighbourhoods of the same point $x$, there is a neighbourhood $W_x$, which is in both of them ($W_x subseteq U_x cap V_x$).
$(C)~$ If the point $y$ lies in $U_x$, there is a neighbourhood $U_y$, which is a subset of $U_x$ ($U_y subseteq U_x$).
$(D)~$ For two different points $x,y$ there exist two neighbourhoods $U_x, U_y$ with no common points ($U_x cap U_y = emptyset$).
and here is a version of the neighbourhood axioms you might find in a modern textbook
$mathcalN(x)$ is a set of neighbourhoods for $x$ iff
beginalign*
(0)&~~~ x in bigcap mathcalN(x) \
(1)&~~~ X in mathcalN(x) \
(2)&~~~ forall ~U_1,U_2 in mathcalN(x) : ~ U_1 cap U_2 in mathcalN(x) \
(3)&~~~ forall~ U subseteq X ~~forall~ N in mathcalN(x):~ N subseteq U Longrightarrow U in mathcalN(x) \
(4)&~~~ forall~ U in mathcalN(x) ~~exists~ V in mathcalN(x)~ forall p in V :~ U in mathcalN(p)
endalign*
Here are a few questions I still have after reading and thinking about it:
$(i)$ Are these axiomatic systems equivalent? Even leaving out axiom $(D)$ (since it says that the space is $T_2$) it does not seem to me that they are. A few of them clearly are equivalent, but I don't see how you could derive $(3)$ from $(A) - (C)$. I could at least imagine that one was added over time, which would explain the problem.
$(ii)$ What is the use of axiom $(4)$? I think most helpful to me would be an example of a proof in which the axiom is indispensable.
$(iii)$ (more historically minded question) How did the word ,,Umgebung'' ended up being translated to neighbourhood?
Hausdorff calls a set $U_x$ a ,,Umgebung'' of $x$ which in English (at least in the mathematical literature) is called a neighbourhood. This is quite strange, since neighbourhood has a direct translation to the German: ,,Nachbarschaft'' whose meaning is quite different from the one of ,,Umgebung''. I my opinion the later would be better translated by the word surrounding. Which makes me curious how the translation came about.
general-topology math-history axioms
$endgroup$
add a comment |
$begingroup$
I was thinking a few days ago about the development of topology, especially how you arrive at the concept of a topology $tau$. I knew that a lot of initial ideas came from Hausdorff who defined a topological space by giving neighbourhood axioms; so I had a look at the original text ,,Grundzüge der Mengenlehre'' to see how his definition compares to the contemporary one.
Here is a translation of the ,,Umgebungsaxiome'' that Hausdorff gives:
$(A)~$ To every point $x$, there is some neighbourhood $U_x$; every neighbourhood $U_x$ contains the point $x$.
$(B)~$ If $U_x,V_x$ are two neighbourhoods of the same point $x$, there is a neighbourhood $W_x$, which is in both of them ($W_x subseteq U_x cap V_x$).
$(C)~$ If the point $y$ lies in $U_x$, there is a neighbourhood $U_y$, which is a subset of $U_x$ ($U_y subseteq U_x$).
$(D)~$ For two different points $x,y$ there exist two neighbourhoods $U_x, U_y$ with no common points ($U_x cap U_y = emptyset$).
and here is a version of the neighbourhood axioms you might find in a modern textbook
$mathcalN(x)$ is a set of neighbourhoods for $x$ iff
beginalign*
(0)&~~~ x in bigcap mathcalN(x) \
(1)&~~~ X in mathcalN(x) \
(2)&~~~ forall ~U_1,U_2 in mathcalN(x) : ~ U_1 cap U_2 in mathcalN(x) \
(3)&~~~ forall~ U subseteq X ~~forall~ N in mathcalN(x):~ N subseteq U Longrightarrow U in mathcalN(x) \
(4)&~~~ forall~ U in mathcalN(x) ~~exists~ V in mathcalN(x)~ forall p in V :~ U in mathcalN(p)
endalign*
Here are a few questions I still have after reading and thinking about it:
$(i)$ Are these axiomatic systems equivalent? Even leaving out axiom $(D)$ (since it says that the space is $T_2$) it does not seem to me that they are. A few of them clearly are equivalent, but I don't see how you could derive $(3)$ from $(A) - (C)$. I could at least imagine that one was added over time, which would explain the problem.
$(ii)$ What is the use of axiom $(4)$? I think most helpful to me would be an example of a proof in which the axiom is indispensable.
$(iii)$ (more historically minded question) How did the word ,,Umgebung'' ended up being translated to neighbourhood?
Hausdorff calls a set $U_x$ a ,,Umgebung'' of $x$ which in English (at least in the mathematical literature) is called a neighbourhood. This is quite strange, since neighbourhood has a direct translation to the German: ,,Nachbarschaft'' whose meaning is quite different from the one of ,,Umgebung''. I my opinion the later would be better translated by the word surrounding. Which makes me curious how the translation came about.
general-topology math-history axioms
$endgroup$
3
$begingroup$
Neighbourhood in English means "area around someone, close to someone", not being a neighbour, so Umgebung is quite equivalent. In Dutch we also say "omgeving". There is no etymologically close English equivalent to Umgebung AFAIK.
$endgroup$
– Henno Brandsma
2 days ago
add a comment |
$begingroup$
I was thinking a few days ago about the development of topology, especially how you arrive at the concept of a topology $tau$. I knew that a lot of initial ideas came from Hausdorff who defined a topological space by giving neighbourhood axioms; so I had a look at the original text ,,Grundzüge der Mengenlehre'' to see how his definition compares to the contemporary one.
Here is a translation of the ,,Umgebungsaxiome'' that Hausdorff gives:
$(A)~$ To every point $x$, there is some neighbourhood $U_x$; every neighbourhood $U_x$ contains the point $x$.
$(B)~$ If $U_x,V_x$ are two neighbourhoods of the same point $x$, there is a neighbourhood $W_x$, which is in both of them ($W_x subseteq U_x cap V_x$).
$(C)~$ If the point $y$ lies in $U_x$, there is a neighbourhood $U_y$, which is a subset of $U_x$ ($U_y subseteq U_x$).
$(D)~$ For two different points $x,y$ there exist two neighbourhoods $U_x, U_y$ with no common points ($U_x cap U_y = emptyset$).
and here is a version of the neighbourhood axioms you might find in a modern textbook
$mathcalN(x)$ is a set of neighbourhoods for $x$ iff
beginalign*
(0)&~~~ x in bigcap mathcalN(x) \
(1)&~~~ X in mathcalN(x) \
(2)&~~~ forall ~U_1,U_2 in mathcalN(x) : ~ U_1 cap U_2 in mathcalN(x) \
(3)&~~~ forall~ U subseteq X ~~forall~ N in mathcalN(x):~ N subseteq U Longrightarrow U in mathcalN(x) \
(4)&~~~ forall~ U in mathcalN(x) ~~exists~ V in mathcalN(x)~ forall p in V :~ U in mathcalN(p)
endalign*
Here are a few questions I still have after reading and thinking about it:
$(i)$ Are these axiomatic systems equivalent? Even leaving out axiom $(D)$ (since it says that the space is $T_2$) it does not seem to me that they are. A few of them clearly are equivalent, but I don't see how you could derive $(3)$ from $(A) - (C)$. I could at least imagine that one was added over time, which would explain the problem.
$(ii)$ What is the use of axiom $(4)$? I think most helpful to me would be an example of a proof in which the axiom is indispensable.
$(iii)$ (more historically minded question) How did the word ,,Umgebung'' ended up being translated to neighbourhood?
Hausdorff calls a set $U_x$ a ,,Umgebung'' of $x$ which in English (at least in the mathematical literature) is called a neighbourhood. This is quite strange, since neighbourhood has a direct translation to the German: ,,Nachbarschaft'' whose meaning is quite different from the one of ,,Umgebung''. I my opinion the later would be better translated by the word surrounding. Which makes me curious how the translation came about.
general-topology math-history axioms
$endgroup$
I was thinking a few days ago about the development of topology, especially how you arrive at the concept of a topology $tau$. I knew that a lot of initial ideas came from Hausdorff who defined a topological space by giving neighbourhood axioms; so I had a look at the original text ,,Grundzüge der Mengenlehre'' to see how his definition compares to the contemporary one.
Here is a translation of the ,,Umgebungsaxiome'' that Hausdorff gives:
$(A)~$ To every point $x$, there is some neighbourhood $U_x$; every neighbourhood $U_x$ contains the point $x$.
$(B)~$ If $U_x,V_x$ are two neighbourhoods of the same point $x$, there is a neighbourhood $W_x$, which is in both of them ($W_x subseteq U_x cap V_x$).
$(C)~$ If the point $y$ lies in $U_x$, there is a neighbourhood $U_y$, which is a subset of $U_x$ ($U_y subseteq U_x$).
$(D)~$ For two different points $x,y$ there exist two neighbourhoods $U_x, U_y$ with no common points ($U_x cap U_y = emptyset$).
and here is a version of the neighbourhood axioms you might find in a modern textbook
$mathcalN(x)$ is a set of neighbourhoods for $x$ iff
beginalign*
(0)&~~~ x in bigcap mathcalN(x) \
(1)&~~~ X in mathcalN(x) \
(2)&~~~ forall ~U_1,U_2 in mathcalN(x) : ~ U_1 cap U_2 in mathcalN(x) \
(3)&~~~ forall~ U subseteq X ~~forall~ N in mathcalN(x):~ N subseteq U Longrightarrow U in mathcalN(x) \
(4)&~~~ forall~ U in mathcalN(x) ~~exists~ V in mathcalN(x)~ forall p in V :~ U in mathcalN(p)
endalign*
Here are a few questions I still have after reading and thinking about it:
$(i)$ Are these axiomatic systems equivalent? Even leaving out axiom $(D)$ (since it says that the space is $T_2$) it does not seem to me that they are. A few of them clearly are equivalent, but I don't see how you could derive $(3)$ from $(A) - (C)$. I could at least imagine that one was added over time, which would explain the problem.
$(ii)$ What is the use of axiom $(4)$? I think most helpful to me would be an example of a proof in which the axiom is indispensable.
$(iii)$ (more historically minded question) How did the word ,,Umgebung'' ended up being translated to neighbourhood?
Hausdorff calls a set $U_x$ a ,,Umgebung'' of $x$ which in English (at least in the mathematical literature) is called a neighbourhood. This is quite strange, since neighbourhood has a direct translation to the German: ,,Nachbarschaft'' whose meaning is quite different from the one of ,,Umgebung''. I my opinion the later would be better translated by the word surrounding. Which makes me curious how the translation came about.
general-topology math-history axioms
general-topology math-history axioms
asked 2 days ago
NemoNemo
854519
854519
3
$begingroup$
Neighbourhood in English means "area around someone, close to someone", not being a neighbour, so Umgebung is quite equivalent. In Dutch we also say "omgeving". There is no etymologically close English equivalent to Umgebung AFAIK.
$endgroup$
– Henno Brandsma
2 days ago
add a comment |
3
$begingroup$
Neighbourhood in English means "area around someone, close to someone", not being a neighbour, so Umgebung is quite equivalent. In Dutch we also say "omgeving". There is no etymologically close English equivalent to Umgebung AFAIK.
$endgroup$
– Henno Brandsma
2 days ago
3
3
$begingroup$
Neighbourhood in English means "area around someone, close to someone", not being a neighbour, so Umgebung is quite equivalent. In Dutch we also say "omgeving". There is no etymologically close English equivalent to Umgebung AFAIK.
$endgroup$
– Henno Brandsma
2 days ago
$begingroup$
Neighbourhood in English means "area around someone, close to someone", not being a neighbour, so Umgebung is quite equivalent. In Dutch we also say "omgeving". There is no etymologically close English equivalent to Umgebung AFAIK.
$endgroup$
– Henno Brandsma
2 days ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hausdorff axiomatises a set of "basic open neighbourhoods" of $x$ essentially, while the other one axiomatises the more general notion of neighbourhood ($N$ is a neighbourhood of $x$ iff there is an open subset $O$ with $x in O subseteq N$), which form a non-empty filter at each point (which is the summary of axioms (0)-(3) ) and (4) is needed to couple the different neighbourhood systems and make a link to openness: it essentially says that every neighbourhood contains an open neighbourhood (one that is a neighbourhood of each of its points), it ensures that when we define the topology in the usual way from the neighbourhood systems, that $mathcalN_x$ becomes exactly the set of neighbourhoods of $x$ in the newly defined topology too. I gave that proof in full on this site before. See this shorter one and this longer one, e.g.
$endgroup$
$begingroup$
Ah! Hasudorff axiomatising ,,basic open neighbourhoods'' was the point which I was clearly missing. The longer proof was also a great read!
$endgroup$
– Nemo
22 hours ago
add a comment |
$begingroup$
The axiom systems are not equivalent. By (C), every neighborhood $U_x$ is an open set. On the other hand, (3) implies that $mathcalN(x)$ is the family of all neighborhoods of $x$, and (4) assures that the members of $mathcalN(x)$ are indeed neighborhoods, i.e. contains $x$ in the interior. So the first system are axioms for (Hausdorff) open neighborhood base, while the second system are axioms for complete neighborhood system. There are also axioms for neighborhood base system, which are slightly weaker than both of these.
There are various similar axiom systems. In general, you have families of sets $mathcalN(x)$ for $x ∈ X$, and you want to induce a topology as follows: $U ⊆ X$ is open if and only if for every $x ∈ U$ there is $N ∈ mathcalN(x)$ such that $N ⊆ U$. There is a weak set of axioms that assures that this indeed induces a topology. But you may add more axioms if you want more properties like
- each $N ∈ mathcalN(x)$ is a neighborhood of $x$ (this is not automatical);
- each $N ∈ mathcalN(x)$ is open;
- each neighborhood of $x$ is a memnber of $N ∈ mathcalN(x)$.
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168569%2fsome-questions-about-different-axiomatic-systems-for-neighbourhoods%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hausdorff axiomatises a set of "basic open neighbourhoods" of $x$ essentially, while the other one axiomatises the more general notion of neighbourhood ($N$ is a neighbourhood of $x$ iff there is an open subset $O$ with $x in O subseteq N$), which form a non-empty filter at each point (which is the summary of axioms (0)-(3) ) and (4) is needed to couple the different neighbourhood systems and make a link to openness: it essentially says that every neighbourhood contains an open neighbourhood (one that is a neighbourhood of each of its points), it ensures that when we define the topology in the usual way from the neighbourhood systems, that $mathcalN_x$ becomes exactly the set of neighbourhoods of $x$ in the newly defined topology too. I gave that proof in full on this site before. See this shorter one and this longer one, e.g.
$endgroup$
$begingroup$
Ah! Hasudorff axiomatising ,,basic open neighbourhoods'' was the point which I was clearly missing. The longer proof was also a great read!
$endgroup$
– Nemo
22 hours ago
add a comment |
$begingroup$
Hausdorff axiomatises a set of "basic open neighbourhoods" of $x$ essentially, while the other one axiomatises the more general notion of neighbourhood ($N$ is a neighbourhood of $x$ iff there is an open subset $O$ with $x in O subseteq N$), which form a non-empty filter at each point (which is the summary of axioms (0)-(3) ) and (4) is needed to couple the different neighbourhood systems and make a link to openness: it essentially says that every neighbourhood contains an open neighbourhood (one that is a neighbourhood of each of its points), it ensures that when we define the topology in the usual way from the neighbourhood systems, that $mathcalN_x$ becomes exactly the set of neighbourhoods of $x$ in the newly defined topology too. I gave that proof in full on this site before. See this shorter one and this longer one, e.g.
$endgroup$
$begingroup$
Ah! Hasudorff axiomatising ,,basic open neighbourhoods'' was the point which I was clearly missing. The longer proof was also a great read!
$endgroup$
– Nemo
22 hours ago
add a comment |
$begingroup$
Hausdorff axiomatises a set of "basic open neighbourhoods" of $x$ essentially, while the other one axiomatises the more general notion of neighbourhood ($N$ is a neighbourhood of $x$ iff there is an open subset $O$ with $x in O subseteq N$), which form a non-empty filter at each point (which is the summary of axioms (0)-(3) ) and (4) is needed to couple the different neighbourhood systems and make a link to openness: it essentially says that every neighbourhood contains an open neighbourhood (one that is a neighbourhood of each of its points), it ensures that when we define the topology in the usual way from the neighbourhood systems, that $mathcalN_x$ becomes exactly the set of neighbourhoods of $x$ in the newly defined topology too. I gave that proof in full on this site before. See this shorter one and this longer one, e.g.
$endgroup$
Hausdorff axiomatises a set of "basic open neighbourhoods" of $x$ essentially, while the other one axiomatises the more general notion of neighbourhood ($N$ is a neighbourhood of $x$ iff there is an open subset $O$ with $x in O subseteq N$), which form a non-empty filter at each point (which is the summary of axioms (0)-(3) ) and (4) is needed to couple the different neighbourhood systems and make a link to openness: it essentially says that every neighbourhood contains an open neighbourhood (one that is a neighbourhood of each of its points), it ensures that when we define the topology in the usual way from the neighbourhood systems, that $mathcalN_x$ becomes exactly the set of neighbourhoods of $x$ in the newly defined topology too. I gave that proof in full on this site before. See this shorter one and this longer one, e.g.
edited 2 days ago
answered 2 days ago
Henno BrandsmaHenno Brandsma
114k348124
114k348124
$begingroup$
Ah! Hasudorff axiomatising ,,basic open neighbourhoods'' was the point which I was clearly missing. The longer proof was also a great read!
$endgroup$
– Nemo
22 hours ago
add a comment |
$begingroup$
Ah! Hasudorff axiomatising ,,basic open neighbourhoods'' was the point which I was clearly missing. The longer proof was also a great read!
$endgroup$
– Nemo
22 hours ago
$begingroup$
Ah! Hasudorff axiomatising ,,basic open neighbourhoods'' was the point which I was clearly missing. The longer proof was also a great read!
$endgroup$
– Nemo
22 hours ago
$begingroup$
Ah! Hasudorff axiomatising ,,basic open neighbourhoods'' was the point which I was clearly missing. The longer proof was also a great read!
$endgroup$
– Nemo
22 hours ago
add a comment |
$begingroup$
The axiom systems are not equivalent. By (C), every neighborhood $U_x$ is an open set. On the other hand, (3) implies that $mathcalN(x)$ is the family of all neighborhoods of $x$, and (4) assures that the members of $mathcalN(x)$ are indeed neighborhoods, i.e. contains $x$ in the interior. So the first system are axioms for (Hausdorff) open neighborhood base, while the second system are axioms for complete neighborhood system. There are also axioms for neighborhood base system, which are slightly weaker than both of these.
There are various similar axiom systems. In general, you have families of sets $mathcalN(x)$ for $x ∈ X$, and you want to induce a topology as follows: $U ⊆ X$ is open if and only if for every $x ∈ U$ there is $N ∈ mathcalN(x)$ such that $N ⊆ U$. There is a weak set of axioms that assures that this indeed induces a topology. But you may add more axioms if you want more properties like
- each $N ∈ mathcalN(x)$ is a neighborhood of $x$ (this is not automatical);
- each $N ∈ mathcalN(x)$ is open;
- each neighborhood of $x$ is a memnber of $N ∈ mathcalN(x)$.
$endgroup$
add a comment |
$begingroup$
The axiom systems are not equivalent. By (C), every neighborhood $U_x$ is an open set. On the other hand, (3) implies that $mathcalN(x)$ is the family of all neighborhoods of $x$, and (4) assures that the members of $mathcalN(x)$ are indeed neighborhoods, i.e. contains $x$ in the interior. So the first system are axioms for (Hausdorff) open neighborhood base, while the second system are axioms for complete neighborhood system. There are also axioms for neighborhood base system, which are slightly weaker than both of these.
There are various similar axiom systems. In general, you have families of sets $mathcalN(x)$ for $x ∈ X$, and you want to induce a topology as follows: $U ⊆ X$ is open if and only if for every $x ∈ U$ there is $N ∈ mathcalN(x)$ such that $N ⊆ U$. There is a weak set of axioms that assures that this indeed induces a topology. But you may add more axioms if you want more properties like
- each $N ∈ mathcalN(x)$ is a neighborhood of $x$ (this is not automatical);
- each $N ∈ mathcalN(x)$ is open;
- each neighborhood of $x$ is a memnber of $N ∈ mathcalN(x)$.
$endgroup$
add a comment |
$begingroup$
The axiom systems are not equivalent. By (C), every neighborhood $U_x$ is an open set. On the other hand, (3) implies that $mathcalN(x)$ is the family of all neighborhoods of $x$, and (4) assures that the members of $mathcalN(x)$ are indeed neighborhoods, i.e. contains $x$ in the interior. So the first system are axioms for (Hausdorff) open neighborhood base, while the second system are axioms for complete neighborhood system. There are also axioms for neighborhood base system, which are slightly weaker than both of these.
There are various similar axiom systems. In general, you have families of sets $mathcalN(x)$ for $x ∈ X$, and you want to induce a topology as follows: $U ⊆ X$ is open if and only if for every $x ∈ U$ there is $N ∈ mathcalN(x)$ such that $N ⊆ U$. There is a weak set of axioms that assures that this indeed induces a topology. But you may add more axioms if you want more properties like
- each $N ∈ mathcalN(x)$ is a neighborhood of $x$ (this is not automatical);
- each $N ∈ mathcalN(x)$ is open;
- each neighborhood of $x$ is a memnber of $N ∈ mathcalN(x)$.
$endgroup$
The axiom systems are not equivalent. By (C), every neighborhood $U_x$ is an open set. On the other hand, (3) implies that $mathcalN(x)$ is the family of all neighborhoods of $x$, and (4) assures that the members of $mathcalN(x)$ are indeed neighborhoods, i.e. contains $x$ in the interior. So the first system are axioms for (Hausdorff) open neighborhood base, while the second system are axioms for complete neighborhood system. There are also axioms for neighborhood base system, which are slightly weaker than both of these.
There are various similar axiom systems. In general, you have families of sets $mathcalN(x)$ for $x ∈ X$, and you want to induce a topology as follows: $U ⊆ X$ is open if and only if for every $x ∈ U$ there is $N ∈ mathcalN(x)$ such that $N ⊆ U$. There is a weak set of axioms that assures that this indeed induces a topology. But you may add more axioms if you want more properties like
- each $N ∈ mathcalN(x)$ is a neighborhood of $x$ (this is not automatical);
- each $N ∈ mathcalN(x)$ is open;
- each neighborhood of $x$ is a memnber of $N ∈ mathcalN(x)$.
answered 2 days ago
user87690user87690
6,6511825
6,6511825
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168569%2fsome-questions-about-different-axiomatic-systems-for-neighbourhoods%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
Neighbourhood in English means "area around someone, close to someone", not being a neighbour, so Umgebung is quite equivalent. In Dutch we also say "omgeving". There is no etymologically close English equivalent to Umgebung AFAIK.
$endgroup$
– Henno Brandsma
2 days ago