How does this infinite series $1-frac14+frac17-frac110+cdots$ simplify to an integral $int_0^1fracdx1+x^3$? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)When can a sum and integral be interchanged?Infinite Series $1+frac12-frac23+frac14+frac15-frac26+cdots$does the infinite series $sum^infty_n=1 (-1)^n frac log(n)n$ converge?Simplify Infinite Series Involving Gamma Function $Gamma$How to simplify this integral?Sum of an infinite series $(1 - frac 12) + (frac 12 - frac 13) + cdots$ - not geometric series?How to find the value of this integral: $int_0^nfrac 1x dx$Does this integral $int_0^infty fracdx(1+e^x)(a+x)$ have a closed form?Does this infinite series converge or diverge?Value of this convergent series: $frac13!+frac25!+frac37!+frac49!+cdots$Calculating a series for$int_0^1 fracx^p-11+x^q dx$ by interchanging sum with integral
Should I use a zero-interest credit card for a large one-time purchase?
An adverb for when you're not exaggerating
Is CEO the profession with the most psychopaths?
Why are the trig functions versine, haversine, exsecant, etc, rarely used in modern mathematics?
Has negative voting ever been officially implemented in elections, or seriously proposed, or even studied?
How to react to hostile behavior from a senior developer?
What is the longest distance a player character can jump in one leap?
If my PI received research grants from a company to be able to pay my postdoc salary, did I have a potential conflict interest too?
What's the meaning of "fortified infraction restraint"?
Can you use the Shield Master feat to shove someone before you make an attack by using a Readied action?
Why do we bend a book to keep it straight?
If a VARCHAR(MAX) column is included in an index, is the entire value always stored in the index page(s)?
Can a new player join a group only when a new campaign starts?
Fundamental Solution of the Pell Equation
Significance of Cersei's obsession with elephants?
Why are both D and D# fitting into my E minor key?
Amount of permutations on an NxNxN Rubik's Cube
Do I really need to have a message in a novel to appeal to readers?
Crossing US/Canada Border for less than 24 hours
Where are Serre’s lectures at Collège de France to be found?
Why aren't air breathing engines used as small first stages
How to Make a Beautiful Stacked 3D Plot
What do you call the main part of a joke?
Is it cost-effective to upgrade an old-ish Giant Escape R3 commuter bike with entry-level branded parts (wheels, drivetrain)?
How does this infinite series $1-frac14+frac17-frac110+cdots$ simplify to an integral $int_0^1fracdx1+x^3$?
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)When can a sum and integral be interchanged?Infinite Series $1+frac12-frac23+frac14+frac15-frac26+cdots$does the infinite series $sum^infty_n=1 (-1)^n frac log(n)n$ converge?Simplify Infinite Series Involving Gamma Function $Gamma$How to simplify this integral?Sum of an infinite series $(1 - frac 12) + (frac 12 - frac 13) + cdots$ - not geometric series?How to find the value of this integral: $int_0^nfrac 1x dx$Does this integral $int_0^infty fracdx(1+e^x)(a+x)$ have a closed form?Does this infinite series converge or diverge?Value of this convergent series: $frac13!+frac25!+frac37!+frac49!+cdots$Calculating a series for$int_0^1 fracx^p-11+x^q dx$ by interchanging sum with integral
$begingroup$
How does the infinite series below simplify to that integral?
$$1-frac14+frac17-frac110+cdots=int_0^1fracdx1+x^3$$
I thought of simplifying the series to the sum to infinity of $frac16n-5 - frac16n-2$, but this did not help.
integration sequences-and-series power-series
$endgroup$
add a comment |
$begingroup$
How does the infinite series below simplify to that integral?
$$1-frac14+frac17-frac110+cdots=int_0^1fracdx1+x^3$$
I thought of simplifying the series to the sum to infinity of $frac16n-5 - frac16n-2$, but this did not help.
integration sequences-and-series power-series
$endgroup$
1
$begingroup$
en.wikipedia.org/wiki/Binomial_series $$(1+x^3)^-1$$
$endgroup$
– lab bhattacharjee
Apr 13 at 16:05
$begingroup$
It can be obtained by integrating term by term the infinite series expansion of $(1+x^3)^-1$.
$endgroup$
– StubbornAtom
Apr 13 at 16:11
add a comment |
$begingroup$
How does the infinite series below simplify to that integral?
$$1-frac14+frac17-frac110+cdots=int_0^1fracdx1+x^3$$
I thought of simplifying the series to the sum to infinity of $frac16n-5 - frac16n-2$, but this did not help.
integration sequences-and-series power-series
$endgroup$
How does the infinite series below simplify to that integral?
$$1-frac14+frac17-frac110+cdots=int_0^1fracdx1+x^3$$
I thought of simplifying the series to the sum to infinity of $frac16n-5 - frac16n-2$, but this did not help.
integration sequences-and-series power-series
integration sequences-and-series power-series
edited 9 hours ago
HAMIDINE SOUMARE
2,570417
2,570417
asked Apr 13 at 16:03
ShreeShree
134
134
1
$begingroup$
en.wikipedia.org/wiki/Binomial_series $$(1+x^3)^-1$$
$endgroup$
– lab bhattacharjee
Apr 13 at 16:05
$begingroup$
It can be obtained by integrating term by term the infinite series expansion of $(1+x^3)^-1$.
$endgroup$
– StubbornAtom
Apr 13 at 16:11
add a comment |
1
$begingroup$
en.wikipedia.org/wiki/Binomial_series $$(1+x^3)^-1$$
$endgroup$
– lab bhattacharjee
Apr 13 at 16:05
$begingroup$
It can be obtained by integrating term by term the infinite series expansion of $(1+x^3)^-1$.
$endgroup$
– StubbornAtom
Apr 13 at 16:11
1
1
$begingroup$
en.wikipedia.org/wiki/Binomial_series $$(1+x^3)^-1$$
$endgroup$
– lab bhattacharjee
Apr 13 at 16:05
$begingroup$
en.wikipedia.org/wiki/Binomial_series $$(1+x^3)^-1$$
$endgroup$
– lab bhattacharjee
Apr 13 at 16:05
$begingroup$
It can be obtained by integrating term by term the infinite series expansion of $(1+x^3)^-1$.
$endgroup$
– StubbornAtom
Apr 13 at 16:11
$begingroup$
It can be obtained by integrating term by term the infinite series expansion of $(1+x^3)^-1$.
$endgroup$
– StubbornAtom
Apr 13 at 16:11
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
$$int_0^1fracdx1-(-x)^3=int_0^1sum_n=0^infty(-x)^3ndx=sum_n=0^infty(-1)^3nint_0^1x^3ndx$$
$$=sum_n=0^inftyfrac(-1)^3n3n+1= 1-frac14+frac17-frac110+cdots $$
$endgroup$
$begingroup$
For those who aren't clear on the first equality, it's a geometric series formula.
$endgroup$
– Alexis Olson
Apr 13 at 19:35
$begingroup$
Why can we interchange the sum and integration? what is the idea? thanks. @AlexisOlson If you are free, please respond. Thanks.
$endgroup$
– StammeringMathematician
22 hours ago
1
$begingroup$
@StammeringMathematician Check out this question.
$endgroup$
– Alexis Olson
14 hours ago
$begingroup$
@AlexisOlson Thanks a lot.
$endgroup$
– StammeringMathematician
12 hours ago
add a comment |
$begingroup$
for $x$ real, $ngeq 0$ integer
beginalignfrac11+x^3&=frac1-(-x^3)^n+11-(-x^3)+frac(-x^3)^n+11-(-x^3)\
&=frac1-(-x^3)^n+11-(-x^3)+frac(-x^3)^n+11+x^3\
endalign
For $xneq 1$, $ngeq 0$ integer, beginalignsum_k=0^n x^k=frac1-x^n+11-xendalign
Therefore,
beginalignint_0^1 frac11+x^3,dx&=int_0^1 left(sum_k=0^n (-x^3)^kright),dx+int_0^1 frac(-x^3)^n+11+x^3,dx\
&=sum_k=0^n left(int_0^1 (-x^3)^k,dxright)+int_0^1 frac(-x^3)^n+11+x^3,dx\
&=sum_k=0^n frac(-1)^k3k+1+int_0^1 frac(-x^3)^n+11+x^3,dx\
endalign
For $xin[0;1],ngeq 0$, integer,
beginalignfracx^3(n+1)1+x^3leq x^3(n+1)endalign
and,
beginalignint_0^1 x^3(n+1),dx=frac13n+4endalign
Therefore,
beginalignleft|int_0^1 frac(-x^3)^n+11+x^3,dxright|leq frac13n+4endalign
beginalignleft|int_0^1 frac11+x^3,dx-sum_k=0^n frac(-1)^k3k+1right|leq frac13n+4endalign
Therefore,
beginalignboxedint_0^1 frac11+x^3,dx=sum_k=0^infty frac(-1)^k3k+1endalign
$endgroup$
$begingroup$
Why can we interchange $sum$ and $int$
$endgroup$
– StammeringMathematician
22 hours ago
$begingroup$
Only finite sums (that is, not series) are used. You can interchange sum and integral signs when the sum involves finite number of terms.
$endgroup$
– FDP
21 hours ago
$begingroup$
Thanks, I got it. Actually I was confused with the answer above yours one as there summation is over infinite terms.
$endgroup$
– StammeringMathematician
21 hours ago
$begingroup$
My computation shows that series converges slowly.
$endgroup$
– FDP
20 hours ago
add a comment |
$begingroup$
If $lvert xrvert<1$, let$$f(x)=sum_n=0^inftyfracx^3n+13n+1.$$Then $$f'(x)=sum_n=0^infty x^3n=frac11-x^3.$$Thereforebeginalign1-frac14+frac17-frac110+cdots&=lim_xto1f(x)\&=int_0^1f'(x),mathrm dx\&=int_0^1frac11-x^3,mathrm dx.endalign
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3186397%2fhow-does-this-infinite-series-1-frac14-frac17-frac110-cdots-si%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$int_0^1fracdx1-(-x)^3=int_0^1sum_n=0^infty(-x)^3ndx=sum_n=0^infty(-1)^3nint_0^1x^3ndx$$
$$=sum_n=0^inftyfrac(-1)^3n3n+1= 1-frac14+frac17-frac110+cdots $$
$endgroup$
$begingroup$
For those who aren't clear on the first equality, it's a geometric series formula.
$endgroup$
– Alexis Olson
Apr 13 at 19:35
$begingroup$
Why can we interchange the sum and integration? what is the idea? thanks. @AlexisOlson If you are free, please respond. Thanks.
$endgroup$
– StammeringMathematician
22 hours ago
1
$begingroup$
@StammeringMathematician Check out this question.
$endgroup$
– Alexis Olson
14 hours ago
$begingroup$
@AlexisOlson Thanks a lot.
$endgroup$
– StammeringMathematician
12 hours ago
add a comment |
$begingroup$
$$int_0^1fracdx1-(-x)^3=int_0^1sum_n=0^infty(-x)^3ndx=sum_n=0^infty(-1)^3nint_0^1x^3ndx$$
$$=sum_n=0^inftyfrac(-1)^3n3n+1= 1-frac14+frac17-frac110+cdots $$
$endgroup$
$begingroup$
For those who aren't clear on the first equality, it's a geometric series formula.
$endgroup$
– Alexis Olson
Apr 13 at 19:35
$begingroup$
Why can we interchange the sum and integration? what is the idea? thanks. @AlexisOlson If you are free, please respond. Thanks.
$endgroup$
– StammeringMathematician
22 hours ago
1
$begingroup$
@StammeringMathematician Check out this question.
$endgroup$
– Alexis Olson
14 hours ago
$begingroup$
@AlexisOlson Thanks a lot.
$endgroup$
– StammeringMathematician
12 hours ago
add a comment |
$begingroup$
$$int_0^1fracdx1-(-x)^3=int_0^1sum_n=0^infty(-x)^3ndx=sum_n=0^infty(-1)^3nint_0^1x^3ndx$$
$$=sum_n=0^inftyfrac(-1)^3n3n+1= 1-frac14+frac17-frac110+cdots $$
$endgroup$
$$int_0^1fracdx1-(-x)^3=int_0^1sum_n=0^infty(-x)^3ndx=sum_n=0^infty(-1)^3nint_0^1x^3ndx$$
$$=sum_n=0^inftyfrac(-1)^3n3n+1= 1-frac14+frac17-frac110+cdots $$
edited yesterday
answered Apr 13 at 16:15
HAMIDINE SOUMAREHAMIDINE SOUMARE
2,570417
2,570417
$begingroup$
For those who aren't clear on the first equality, it's a geometric series formula.
$endgroup$
– Alexis Olson
Apr 13 at 19:35
$begingroup$
Why can we interchange the sum and integration? what is the idea? thanks. @AlexisOlson If you are free, please respond. Thanks.
$endgroup$
– StammeringMathematician
22 hours ago
1
$begingroup$
@StammeringMathematician Check out this question.
$endgroup$
– Alexis Olson
14 hours ago
$begingroup$
@AlexisOlson Thanks a lot.
$endgroup$
– StammeringMathematician
12 hours ago
add a comment |
$begingroup$
For those who aren't clear on the first equality, it's a geometric series formula.
$endgroup$
– Alexis Olson
Apr 13 at 19:35
$begingroup$
Why can we interchange the sum and integration? what is the idea? thanks. @AlexisOlson If you are free, please respond. Thanks.
$endgroup$
– StammeringMathematician
22 hours ago
1
$begingroup$
@StammeringMathematician Check out this question.
$endgroup$
– Alexis Olson
14 hours ago
$begingroup$
@AlexisOlson Thanks a lot.
$endgroup$
– StammeringMathematician
12 hours ago
$begingroup$
For those who aren't clear on the first equality, it's a geometric series formula.
$endgroup$
– Alexis Olson
Apr 13 at 19:35
$begingroup$
For those who aren't clear on the first equality, it's a geometric series formula.
$endgroup$
– Alexis Olson
Apr 13 at 19:35
$begingroup$
Why can we interchange the sum and integration? what is the idea? thanks. @AlexisOlson If you are free, please respond. Thanks.
$endgroup$
– StammeringMathematician
22 hours ago
$begingroup$
Why can we interchange the sum and integration? what is the idea? thanks. @AlexisOlson If you are free, please respond. Thanks.
$endgroup$
– StammeringMathematician
22 hours ago
1
1
$begingroup$
@StammeringMathematician Check out this question.
$endgroup$
– Alexis Olson
14 hours ago
$begingroup$
@StammeringMathematician Check out this question.
$endgroup$
– Alexis Olson
14 hours ago
$begingroup$
@AlexisOlson Thanks a lot.
$endgroup$
– StammeringMathematician
12 hours ago
$begingroup$
@AlexisOlson Thanks a lot.
$endgroup$
– StammeringMathematician
12 hours ago
add a comment |
$begingroup$
for $x$ real, $ngeq 0$ integer
beginalignfrac11+x^3&=frac1-(-x^3)^n+11-(-x^3)+frac(-x^3)^n+11-(-x^3)\
&=frac1-(-x^3)^n+11-(-x^3)+frac(-x^3)^n+11+x^3\
endalign
For $xneq 1$, $ngeq 0$ integer, beginalignsum_k=0^n x^k=frac1-x^n+11-xendalign
Therefore,
beginalignint_0^1 frac11+x^3,dx&=int_0^1 left(sum_k=0^n (-x^3)^kright),dx+int_0^1 frac(-x^3)^n+11+x^3,dx\
&=sum_k=0^n left(int_0^1 (-x^3)^k,dxright)+int_0^1 frac(-x^3)^n+11+x^3,dx\
&=sum_k=0^n frac(-1)^k3k+1+int_0^1 frac(-x^3)^n+11+x^3,dx\
endalign
For $xin[0;1],ngeq 0$, integer,
beginalignfracx^3(n+1)1+x^3leq x^3(n+1)endalign
and,
beginalignint_0^1 x^3(n+1),dx=frac13n+4endalign
Therefore,
beginalignleft|int_0^1 frac(-x^3)^n+11+x^3,dxright|leq frac13n+4endalign
beginalignleft|int_0^1 frac11+x^3,dx-sum_k=0^n frac(-1)^k3k+1right|leq frac13n+4endalign
Therefore,
beginalignboxedint_0^1 frac11+x^3,dx=sum_k=0^infty frac(-1)^k3k+1endalign
$endgroup$
$begingroup$
Why can we interchange $sum$ and $int$
$endgroup$
– StammeringMathematician
22 hours ago
$begingroup$
Only finite sums (that is, not series) are used. You can interchange sum and integral signs when the sum involves finite number of terms.
$endgroup$
– FDP
21 hours ago
$begingroup$
Thanks, I got it. Actually I was confused with the answer above yours one as there summation is over infinite terms.
$endgroup$
– StammeringMathematician
21 hours ago
$begingroup$
My computation shows that series converges slowly.
$endgroup$
– FDP
20 hours ago
add a comment |
$begingroup$
for $x$ real, $ngeq 0$ integer
beginalignfrac11+x^3&=frac1-(-x^3)^n+11-(-x^3)+frac(-x^3)^n+11-(-x^3)\
&=frac1-(-x^3)^n+11-(-x^3)+frac(-x^3)^n+11+x^3\
endalign
For $xneq 1$, $ngeq 0$ integer, beginalignsum_k=0^n x^k=frac1-x^n+11-xendalign
Therefore,
beginalignint_0^1 frac11+x^3,dx&=int_0^1 left(sum_k=0^n (-x^3)^kright),dx+int_0^1 frac(-x^3)^n+11+x^3,dx\
&=sum_k=0^n left(int_0^1 (-x^3)^k,dxright)+int_0^1 frac(-x^3)^n+11+x^3,dx\
&=sum_k=0^n frac(-1)^k3k+1+int_0^1 frac(-x^3)^n+11+x^3,dx\
endalign
For $xin[0;1],ngeq 0$, integer,
beginalignfracx^3(n+1)1+x^3leq x^3(n+1)endalign
and,
beginalignint_0^1 x^3(n+1),dx=frac13n+4endalign
Therefore,
beginalignleft|int_0^1 frac(-x^3)^n+11+x^3,dxright|leq frac13n+4endalign
beginalignleft|int_0^1 frac11+x^3,dx-sum_k=0^n frac(-1)^k3k+1right|leq frac13n+4endalign
Therefore,
beginalignboxedint_0^1 frac11+x^3,dx=sum_k=0^infty frac(-1)^k3k+1endalign
$endgroup$
$begingroup$
Why can we interchange $sum$ and $int$
$endgroup$
– StammeringMathematician
22 hours ago
$begingroup$
Only finite sums (that is, not series) are used. You can interchange sum and integral signs when the sum involves finite number of terms.
$endgroup$
– FDP
21 hours ago
$begingroup$
Thanks, I got it. Actually I was confused with the answer above yours one as there summation is over infinite terms.
$endgroup$
– StammeringMathematician
21 hours ago
$begingroup$
My computation shows that series converges slowly.
$endgroup$
– FDP
20 hours ago
add a comment |
$begingroup$
for $x$ real, $ngeq 0$ integer
beginalignfrac11+x^3&=frac1-(-x^3)^n+11-(-x^3)+frac(-x^3)^n+11-(-x^3)\
&=frac1-(-x^3)^n+11-(-x^3)+frac(-x^3)^n+11+x^3\
endalign
For $xneq 1$, $ngeq 0$ integer, beginalignsum_k=0^n x^k=frac1-x^n+11-xendalign
Therefore,
beginalignint_0^1 frac11+x^3,dx&=int_0^1 left(sum_k=0^n (-x^3)^kright),dx+int_0^1 frac(-x^3)^n+11+x^3,dx\
&=sum_k=0^n left(int_0^1 (-x^3)^k,dxright)+int_0^1 frac(-x^3)^n+11+x^3,dx\
&=sum_k=0^n frac(-1)^k3k+1+int_0^1 frac(-x^3)^n+11+x^3,dx\
endalign
For $xin[0;1],ngeq 0$, integer,
beginalignfracx^3(n+1)1+x^3leq x^3(n+1)endalign
and,
beginalignint_0^1 x^3(n+1),dx=frac13n+4endalign
Therefore,
beginalignleft|int_0^1 frac(-x^3)^n+11+x^3,dxright|leq frac13n+4endalign
beginalignleft|int_0^1 frac11+x^3,dx-sum_k=0^n frac(-1)^k3k+1right|leq frac13n+4endalign
Therefore,
beginalignboxedint_0^1 frac11+x^3,dx=sum_k=0^infty frac(-1)^k3k+1endalign
$endgroup$
for $x$ real, $ngeq 0$ integer
beginalignfrac11+x^3&=frac1-(-x^3)^n+11-(-x^3)+frac(-x^3)^n+11-(-x^3)\
&=frac1-(-x^3)^n+11-(-x^3)+frac(-x^3)^n+11+x^3\
endalign
For $xneq 1$, $ngeq 0$ integer, beginalignsum_k=0^n x^k=frac1-x^n+11-xendalign
Therefore,
beginalignint_0^1 frac11+x^3,dx&=int_0^1 left(sum_k=0^n (-x^3)^kright),dx+int_0^1 frac(-x^3)^n+11+x^3,dx\
&=sum_k=0^n left(int_0^1 (-x^3)^k,dxright)+int_0^1 frac(-x^3)^n+11+x^3,dx\
&=sum_k=0^n frac(-1)^k3k+1+int_0^1 frac(-x^3)^n+11+x^3,dx\
endalign
For $xin[0;1],ngeq 0$, integer,
beginalignfracx^3(n+1)1+x^3leq x^3(n+1)endalign
and,
beginalignint_0^1 x^3(n+1),dx=frac13n+4endalign
Therefore,
beginalignleft|int_0^1 frac(-x^3)^n+11+x^3,dxright|leq frac13n+4endalign
beginalignleft|int_0^1 frac11+x^3,dx-sum_k=0^n frac(-1)^k3k+1right|leq frac13n+4endalign
Therefore,
beginalignboxedint_0^1 frac11+x^3,dx=sum_k=0^infty frac(-1)^k3k+1endalign
answered Apr 13 at 16:47
FDPFDP
6,16211929
6,16211929
$begingroup$
Why can we interchange $sum$ and $int$
$endgroup$
– StammeringMathematician
22 hours ago
$begingroup$
Only finite sums (that is, not series) are used. You can interchange sum and integral signs when the sum involves finite number of terms.
$endgroup$
– FDP
21 hours ago
$begingroup$
Thanks, I got it. Actually I was confused with the answer above yours one as there summation is over infinite terms.
$endgroup$
– StammeringMathematician
21 hours ago
$begingroup$
My computation shows that series converges slowly.
$endgroup$
– FDP
20 hours ago
add a comment |
$begingroup$
Why can we interchange $sum$ and $int$
$endgroup$
– StammeringMathematician
22 hours ago
$begingroup$
Only finite sums (that is, not series) are used. You can interchange sum and integral signs when the sum involves finite number of terms.
$endgroup$
– FDP
21 hours ago
$begingroup$
Thanks, I got it. Actually I was confused with the answer above yours one as there summation is over infinite terms.
$endgroup$
– StammeringMathematician
21 hours ago
$begingroup$
My computation shows that series converges slowly.
$endgroup$
– FDP
20 hours ago
$begingroup$
Why can we interchange $sum$ and $int$
$endgroup$
– StammeringMathematician
22 hours ago
$begingroup$
Why can we interchange $sum$ and $int$
$endgroup$
– StammeringMathematician
22 hours ago
$begingroup$
Only finite sums (that is, not series) are used. You can interchange sum and integral signs when the sum involves finite number of terms.
$endgroup$
– FDP
21 hours ago
$begingroup$
Only finite sums (that is, not series) are used. You can interchange sum and integral signs when the sum involves finite number of terms.
$endgroup$
– FDP
21 hours ago
$begingroup$
Thanks, I got it. Actually I was confused with the answer above yours one as there summation is over infinite terms.
$endgroup$
– StammeringMathematician
21 hours ago
$begingroup$
Thanks, I got it. Actually I was confused with the answer above yours one as there summation is over infinite terms.
$endgroup$
– StammeringMathematician
21 hours ago
$begingroup$
My computation shows that series converges slowly.
$endgroup$
– FDP
20 hours ago
$begingroup$
My computation shows that series converges slowly.
$endgroup$
– FDP
20 hours ago
add a comment |
$begingroup$
If $lvert xrvert<1$, let$$f(x)=sum_n=0^inftyfracx^3n+13n+1.$$Then $$f'(x)=sum_n=0^infty x^3n=frac11-x^3.$$Thereforebeginalign1-frac14+frac17-frac110+cdots&=lim_xto1f(x)\&=int_0^1f'(x),mathrm dx\&=int_0^1frac11-x^3,mathrm dx.endalign
$endgroup$
add a comment |
$begingroup$
If $lvert xrvert<1$, let$$f(x)=sum_n=0^inftyfracx^3n+13n+1.$$Then $$f'(x)=sum_n=0^infty x^3n=frac11-x^3.$$Thereforebeginalign1-frac14+frac17-frac110+cdots&=lim_xto1f(x)\&=int_0^1f'(x),mathrm dx\&=int_0^1frac11-x^3,mathrm dx.endalign
$endgroup$
add a comment |
$begingroup$
If $lvert xrvert<1$, let$$f(x)=sum_n=0^inftyfracx^3n+13n+1.$$Then $$f'(x)=sum_n=0^infty x^3n=frac11-x^3.$$Thereforebeginalign1-frac14+frac17-frac110+cdots&=lim_xto1f(x)\&=int_0^1f'(x),mathrm dx\&=int_0^1frac11-x^3,mathrm dx.endalign
$endgroup$
If $lvert xrvert<1$, let$$f(x)=sum_n=0^inftyfracx^3n+13n+1.$$Then $$f'(x)=sum_n=0^infty x^3n=frac11-x^3.$$Thereforebeginalign1-frac14+frac17-frac110+cdots&=lim_xto1f(x)\&=int_0^1f'(x),mathrm dx\&=int_0^1frac11-x^3,mathrm dx.endalign
answered Apr 13 at 16:15
José Carlos SantosJosé Carlos Santos
175k24134243
175k24134243
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3186397%2fhow-does-this-infinite-series-1-frac14-frac17-frac110-cdots-si%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
en.wikipedia.org/wiki/Binomial_series $$(1+x^3)^-1$$
$endgroup$
– lab bhattacharjee
Apr 13 at 16:05
$begingroup$
It can be obtained by integrating term by term the infinite series expansion of $(1+x^3)^-1$.
$endgroup$
– StubbornAtom
Apr 13 at 16:11