Semisimplicity of the category of coherent sheaves? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Characterisation of coherent sheaves on an algebraic varietyIs the category of quasi-coherent sheaves on a concentrated stack locally finitely presentable?Finitely Presented Objects in The Category of Quasi-Coherent SheavesQuasi-coherent sheaves on $X/G$flatness in the category of quasi coherent sheavesis the category of coherent sheaves some kind of abelian envelope of the category of vector bundles?Relationship between coherent toposes/coherent logic and coherent sheavesDo I know what “coherent sheaf” means if I know what it means on locally Noetherian schemes?locally noetherian categories and the category of quasi-coherent sheaves over a noetherian schemeWhen are direct products exact in the category of quasi-coherent sheaves?

Semisimplicity of the category of coherent sheaves?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Characterisation of coherent sheaves on an algebraic varietyIs the category of quasi-coherent sheaves on a concentrated stack locally finitely presentable?Finitely Presented Objects in The Category of Quasi-Coherent SheavesQuasi-coherent sheaves on $X/G$flatness in the category of quasi coherent sheavesis the category of coherent sheaves some kind of abelian envelope of the category of vector bundles?Relationship between coherent toposes/coherent logic and coherent sheavesDo I know what “coherent sheaf” means if I know what it means on locally Noetherian schemes?locally noetherian categories and the category of quasi-coherent sheaves over a noetherian schemeWhen are direct products exact in the category of quasi-coherent sheaves?










8












$begingroup$


The category of coherent sheaves on a locally Noetherian scheme is abelian. Are there some geometric conditions on the scheme that imply that the category of coherent sheaves is semisimple?



Edited in response to posic's comments.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    The category of quasi-coherent sheaves is abelian on any scheme. The category of coherent sheaves, on the other hand, is only abelian on a locally Noetherian (or at best a locally coherent) scheme, I would think. E.g., consider the case of an affine scheme, which is the spectrum of an arbitrary ring. The category of finitely presented modules over such a ring is not abelian. What is "the abelian category of coherent sheaves" over such a scheme?
    $endgroup$
    – Leonid Positselski
    Apr 13 at 13:41















8












$begingroup$


The category of coherent sheaves on a locally Noetherian scheme is abelian. Are there some geometric conditions on the scheme that imply that the category of coherent sheaves is semisimple?



Edited in response to posic's comments.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    The category of quasi-coherent sheaves is abelian on any scheme. The category of coherent sheaves, on the other hand, is only abelian on a locally Noetherian (or at best a locally coherent) scheme, I would think. E.g., consider the case of an affine scheme, which is the spectrum of an arbitrary ring. The category of finitely presented modules over such a ring is not abelian. What is "the abelian category of coherent sheaves" over such a scheme?
    $endgroup$
    – Leonid Positselski
    Apr 13 at 13:41













8












8








8


1



$begingroup$


The category of coherent sheaves on a locally Noetherian scheme is abelian. Are there some geometric conditions on the scheme that imply that the category of coherent sheaves is semisimple?



Edited in response to posic's comments.










share|cite|improve this question











$endgroup$




The category of coherent sheaves on a locally Noetherian scheme is abelian. Are there some geometric conditions on the scheme that imply that the category of coherent sheaves is semisimple?



Edited in response to posic's comments.







ag.algebraic-geometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 13 at 14:23







Stepan Banach

















asked Apr 13 at 11:15









Stepan BanachStepan Banach

23316




23316







  • 2




    $begingroup$
    The category of quasi-coherent sheaves is abelian on any scheme. The category of coherent sheaves, on the other hand, is only abelian on a locally Noetherian (or at best a locally coherent) scheme, I would think. E.g., consider the case of an affine scheme, which is the spectrum of an arbitrary ring. The category of finitely presented modules over such a ring is not abelian. What is "the abelian category of coherent sheaves" over such a scheme?
    $endgroup$
    – Leonid Positselski
    Apr 13 at 13:41












  • 2




    $begingroup$
    The category of quasi-coherent sheaves is abelian on any scheme. The category of coherent sheaves, on the other hand, is only abelian on a locally Noetherian (or at best a locally coherent) scheme, I would think. E.g., consider the case of an affine scheme, which is the spectrum of an arbitrary ring. The category of finitely presented modules over such a ring is not abelian. What is "the abelian category of coherent sheaves" over such a scheme?
    $endgroup$
    – Leonid Positselski
    Apr 13 at 13:41







2




2




$begingroup$
The category of quasi-coherent sheaves is abelian on any scheme. The category of coherent sheaves, on the other hand, is only abelian on a locally Noetherian (or at best a locally coherent) scheme, I would think. E.g., consider the case of an affine scheme, which is the spectrum of an arbitrary ring. The category of finitely presented modules over such a ring is not abelian. What is "the abelian category of coherent sheaves" over such a scheme?
$endgroup$
– Leonid Positselski
Apr 13 at 13:41




$begingroup$
The category of quasi-coherent sheaves is abelian on any scheme. The category of coherent sheaves, on the other hand, is only abelian on a locally Noetherian (or at best a locally coherent) scheme, I would think. E.g., consider the case of an affine scheme, which is the spectrum of an arbitrary ring. The category of finitely presented modules over such a ring is not abelian. What is "the abelian category of coherent sheaves" over such a scheme?
$endgroup$
– Leonid Positselski
Apr 13 at 13:41










1 Answer
1






active

oldest

votes


















13












$begingroup$

Let $X$ be a locally Noetherian scheme. Then the abelian category of coherent sheaves on $X$ is semisimple if and only if $X$ is the disjoint union of finitely many reduced points.



The if direction is clear: the category of coherent sheaves on a finite union of reduced points is a direct sum of categories of finite dimensional vector spaces (over fields), so semisimple.



Only if direction. If the category of coherent sheaves is semisimple, then all $Ext^1$ vanish, in particular, for every closed point $x$ of $X$, we have $Ext^1(k_x,k_x)=0$, where $k_x$ is the skyscraper sheaf at $x$. But $Ext^1(k_x,k_x)$ is the Zariski tangent space at $X$ (e.g. see https://math.stackexchange.com/questions/75673/tangent-space-in-a-point-and-first-ext-group ). As $X$ is locally Noetherian, the local ring at $x$ is Noetherian and the vanishing of the Zariski tangent space at $x$ implies by Nakayama lemma that the local ring at $x$ is a field. Using the fact that in a locally Noetherian scheme, every point specializes to a closed point (e.g. see https://stacks.math.columbia.edu/tag/01OU), it follows that $X$ is a disjoint union of reduced points.
If this union is infinite, then the category of coherent sheaves is not semisimple (the structure sheaf is not a finite direct sum of simple objects). So $X$ has to be a finite disjoint union of reduced points.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    No, the category of coherent sheaves over an infinite disjoint union of reduced points is semisimple abelian, in fact. It is equivalent to the infinite Cartesian product of the categories of finite-dimensional vector spaces over the related fields. Every object in it is naturally the direct sum of its components sitting at the points, and at the same time it is the infinite product of the same components.
    $endgroup$
    – Leonid Positselski
    Apr 13 at 15:19











  • $begingroup$
    ... So, in particular, the structure sheaf over such a scheme $X$ is the infinite direct sum, and at the same time the infinite product, of the one-dimensional (skyscraper) sheaves $k_x$ sitting at the points $xin X$. These skyscraper sheaves are simple objects.
    $endgroup$
    – Leonid Positselski
    Apr 13 at 15:24






  • 6




    $begingroup$
    The issue is maybe the correct definition of "semisimple". If I look at ncatlab.org/nlab/show/semisimple+category or en.wikipedia.org/wiki/Semi-simplicity , the definition is that every object is a direct sum of finitely many simple objects. If we remove the condition "finitely many", I agree with your comments.
    $endgroup$
    – user25309
    Apr 13 at 15:38










  • $begingroup$
    Oh, yes. Then you are right.
    $endgroup$
    – Leonid Positselski
    Apr 13 at 15:40











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "504"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327961%2fsemisimplicity-of-the-category-of-coherent-sheaves%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









13












$begingroup$

Let $X$ be a locally Noetherian scheme. Then the abelian category of coherent sheaves on $X$ is semisimple if and only if $X$ is the disjoint union of finitely many reduced points.



The if direction is clear: the category of coherent sheaves on a finite union of reduced points is a direct sum of categories of finite dimensional vector spaces (over fields), so semisimple.



Only if direction. If the category of coherent sheaves is semisimple, then all $Ext^1$ vanish, in particular, for every closed point $x$ of $X$, we have $Ext^1(k_x,k_x)=0$, where $k_x$ is the skyscraper sheaf at $x$. But $Ext^1(k_x,k_x)$ is the Zariski tangent space at $X$ (e.g. see https://math.stackexchange.com/questions/75673/tangent-space-in-a-point-and-first-ext-group ). As $X$ is locally Noetherian, the local ring at $x$ is Noetherian and the vanishing of the Zariski tangent space at $x$ implies by Nakayama lemma that the local ring at $x$ is a field. Using the fact that in a locally Noetherian scheme, every point specializes to a closed point (e.g. see https://stacks.math.columbia.edu/tag/01OU), it follows that $X$ is a disjoint union of reduced points.
If this union is infinite, then the category of coherent sheaves is not semisimple (the structure sheaf is not a finite direct sum of simple objects). So $X$ has to be a finite disjoint union of reduced points.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    No, the category of coherent sheaves over an infinite disjoint union of reduced points is semisimple abelian, in fact. It is equivalent to the infinite Cartesian product of the categories of finite-dimensional vector spaces over the related fields. Every object in it is naturally the direct sum of its components sitting at the points, and at the same time it is the infinite product of the same components.
    $endgroup$
    – Leonid Positselski
    Apr 13 at 15:19











  • $begingroup$
    ... So, in particular, the structure sheaf over such a scheme $X$ is the infinite direct sum, and at the same time the infinite product, of the one-dimensional (skyscraper) sheaves $k_x$ sitting at the points $xin X$. These skyscraper sheaves are simple objects.
    $endgroup$
    – Leonid Positselski
    Apr 13 at 15:24






  • 6




    $begingroup$
    The issue is maybe the correct definition of "semisimple". If I look at ncatlab.org/nlab/show/semisimple+category or en.wikipedia.org/wiki/Semi-simplicity , the definition is that every object is a direct sum of finitely many simple objects. If we remove the condition "finitely many", I agree with your comments.
    $endgroup$
    – user25309
    Apr 13 at 15:38










  • $begingroup$
    Oh, yes. Then you are right.
    $endgroup$
    – Leonid Positselski
    Apr 13 at 15:40















13












$begingroup$

Let $X$ be a locally Noetherian scheme. Then the abelian category of coherent sheaves on $X$ is semisimple if and only if $X$ is the disjoint union of finitely many reduced points.



The if direction is clear: the category of coherent sheaves on a finite union of reduced points is a direct sum of categories of finite dimensional vector spaces (over fields), so semisimple.



Only if direction. If the category of coherent sheaves is semisimple, then all $Ext^1$ vanish, in particular, for every closed point $x$ of $X$, we have $Ext^1(k_x,k_x)=0$, where $k_x$ is the skyscraper sheaf at $x$. But $Ext^1(k_x,k_x)$ is the Zariski tangent space at $X$ (e.g. see https://math.stackexchange.com/questions/75673/tangent-space-in-a-point-and-first-ext-group ). As $X$ is locally Noetherian, the local ring at $x$ is Noetherian and the vanishing of the Zariski tangent space at $x$ implies by Nakayama lemma that the local ring at $x$ is a field. Using the fact that in a locally Noetherian scheme, every point specializes to a closed point (e.g. see https://stacks.math.columbia.edu/tag/01OU), it follows that $X$ is a disjoint union of reduced points.
If this union is infinite, then the category of coherent sheaves is not semisimple (the structure sheaf is not a finite direct sum of simple objects). So $X$ has to be a finite disjoint union of reduced points.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    No, the category of coherent sheaves over an infinite disjoint union of reduced points is semisimple abelian, in fact. It is equivalent to the infinite Cartesian product of the categories of finite-dimensional vector spaces over the related fields. Every object in it is naturally the direct sum of its components sitting at the points, and at the same time it is the infinite product of the same components.
    $endgroup$
    – Leonid Positselski
    Apr 13 at 15:19











  • $begingroup$
    ... So, in particular, the structure sheaf over such a scheme $X$ is the infinite direct sum, and at the same time the infinite product, of the one-dimensional (skyscraper) sheaves $k_x$ sitting at the points $xin X$. These skyscraper sheaves are simple objects.
    $endgroup$
    – Leonid Positselski
    Apr 13 at 15:24






  • 6




    $begingroup$
    The issue is maybe the correct definition of "semisimple". If I look at ncatlab.org/nlab/show/semisimple+category or en.wikipedia.org/wiki/Semi-simplicity , the definition is that every object is a direct sum of finitely many simple objects. If we remove the condition "finitely many", I agree with your comments.
    $endgroup$
    – user25309
    Apr 13 at 15:38










  • $begingroup$
    Oh, yes. Then you are right.
    $endgroup$
    – Leonid Positselski
    Apr 13 at 15:40













13












13








13





$begingroup$

Let $X$ be a locally Noetherian scheme. Then the abelian category of coherent sheaves on $X$ is semisimple if and only if $X$ is the disjoint union of finitely many reduced points.



The if direction is clear: the category of coherent sheaves on a finite union of reduced points is a direct sum of categories of finite dimensional vector spaces (over fields), so semisimple.



Only if direction. If the category of coherent sheaves is semisimple, then all $Ext^1$ vanish, in particular, for every closed point $x$ of $X$, we have $Ext^1(k_x,k_x)=0$, where $k_x$ is the skyscraper sheaf at $x$. But $Ext^1(k_x,k_x)$ is the Zariski tangent space at $X$ (e.g. see https://math.stackexchange.com/questions/75673/tangent-space-in-a-point-and-first-ext-group ). As $X$ is locally Noetherian, the local ring at $x$ is Noetherian and the vanishing of the Zariski tangent space at $x$ implies by Nakayama lemma that the local ring at $x$ is a field. Using the fact that in a locally Noetherian scheme, every point specializes to a closed point (e.g. see https://stacks.math.columbia.edu/tag/01OU), it follows that $X$ is a disjoint union of reduced points.
If this union is infinite, then the category of coherent sheaves is not semisimple (the structure sheaf is not a finite direct sum of simple objects). So $X$ has to be a finite disjoint union of reduced points.






share|cite|improve this answer











$endgroup$



Let $X$ be a locally Noetherian scheme. Then the abelian category of coherent sheaves on $X$ is semisimple if and only if $X$ is the disjoint union of finitely many reduced points.



The if direction is clear: the category of coherent sheaves on a finite union of reduced points is a direct sum of categories of finite dimensional vector spaces (over fields), so semisimple.



Only if direction. If the category of coherent sheaves is semisimple, then all $Ext^1$ vanish, in particular, for every closed point $x$ of $X$, we have $Ext^1(k_x,k_x)=0$, where $k_x$ is the skyscraper sheaf at $x$. But $Ext^1(k_x,k_x)$ is the Zariski tangent space at $X$ (e.g. see https://math.stackexchange.com/questions/75673/tangent-space-in-a-point-and-first-ext-group ). As $X$ is locally Noetherian, the local ring at $x$ is Noetherian and the vanishing of the Zariski tangent space at $x$ implies by Nakayama lemma that the local ring at $x$ is a field. Using the fact that in a locally Noetherian scheme, every point specializes to a closed point (e.g. see https://stacks.math.columbia.edu/tag/01OU), it follows that $X$ is a disjoint union of reduced points.
If this union is infinite, then the category of coherent sheaves is not semisimple (the structure sheaf is not a finite direct sum of simple objects). So $X$ has to be a finite disjoint union of reduced points.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Apr 13 at 15:40

























answered Apr 13 at 15:05









user25309user25309

4,9272340




4,9272340











  • $begingroup$
    No, the category of coherent sheaves over an infinite disjoint union of reduced points is semisimple abelian, in fact. It is equivalent to the infinite Cartesian product of the categories of finite-dimensional vector spaces over the related fields. Every object in it is naturally the direct sum of its components sitting at the points, and at the same time it is the infinite product of the same components.
    $endgroup$
    – Leonid Positselski
    Apr 13 at 15:19











  • $begingroup$
    ... So, in particular, the structure sheaf over such a scheme $X$ is the infinite direct sum, and at the same time the infinite product, of the one-dimensional (skyscraper) sheaves $k_x$ sitting at the points $xin X$. These skyscraper sheaves are simple objects.
    $endgroup$
    – Leonid Positselski
    Apr 13 at 15:24






  • 6




    $begingroup$
    The issue is maybe the correct definition of "semisimple". If I look at ncatlab.org/nlab/show/semisimple+category or en.wikipedia.org/wiki/Semi-simplicity , the definition is that every object is a direct sum of finitely many simple objects. If we remove the condition "finitely many", I agree with your comments.
    $endgroup$
    – user25309
    Apr 13 at 15:38










  • $begingroup$
    Oh, yes. Then you are right.
    $endgroup$
    – Leonid Positselski
    Apr 13 at 15:40
















  • $begingroup$
    No, the category of coherent sheaves over an infinite disjoint union of reduced points is semisimple abelian, in fact. It is equivalent to the infinite Cartesian product of the categories of finite-dimensional vector spaces over the related fields. Every object in it is naturally the direct sum of its components sitting at the points, and at the same time it is the infinite product of the same components.
    $endgroup$
    – Leonid Positselski
    Apr 13 at 15:19











  • $begingroup$
    ... So, in particular, the structure sheaf over such a scheme $X$ is the infinite direct sum, and at the same time the infinite product, of the one-dimensional (skyscraper) sheaves $k_x$ sitting at the points $xin X$. These skyscraper sheaves are simple objects.
    $endgroup$
    – Leonid Positselski
    Apr 13 at 15:24






  • 6




    $begingroup$
    The issue is maybe the correct definition of "semisimple". If I look at ncatlab.org/nlab/show/semisimple+category or en.wikipedia.org/wiki/Semi-simplicity , the definition is that every object is a direct sum of finitely many simple objects. If we remove the condition "finitely many", I agree with your comments.
    $endgroup$
    – user25309
    Apr 13 at 15:38










  • $begingroup$
    Oh, yes. Then you are right.
    $endgroup$
    – Leonid Positselski
    Apr 13 at 15:40















$begingroup$
No, the category of coherent sheaves over an infinite disjoint union of reduced points is semisimple abelian, in fact. It is equivalent to the infinite Cartesian product of the categories of finite-dimensional vector spaces over the related fields. Every object in it is naturally the direct sum of its components sitting at the points, and at the same time it is the infinite product of the same components.
$endgroup$
– Leonid Positselski
Apr 13 at 15:19





$begingroup$
No, the category of coherent sheaves over an infinite disjoint union of reduced points is semisimple abelian, in fact. It is equivalent to the infinite Cartesian product of the categories of finite-dimensional vector spaces over the related fields. Every object in it is naturally the direct sum of its components sitting at the points, and at the same time it is the infinite product of the same components.
$endgroup$
– Leonid Positselski
Apr 13 at 15:19













$begingroup$
... So, in particular, the structure sheaf over such a scheme $X$ is the infinite direct sum, and at the same time the infinite product, of the one-dimensional (skyscraper) sheaves $k_x$ sitting at the points $xin X$. These skyscraper sheaves are simple objects.
$endgroup$
– Leonid Positselski
Apr 13 at 15:24




$begingroup$
... So, in particular, the structure sheaf over such a scheme $X$ is the infinite direct sum, and at the same time the infinite product, of the one-dimensional (skyscraper) sheaves $k_x$ sitting at the points $xin X$. These skyscraper sheaves are simple objects.
$endgroup$
– Leonid Positselski
Apr 13 at 15:24




6




6




$begingroup$
The issue is maybe the correct definition of "semisimple". If I look at ncatlab.org/nlab/show/semisimple+category or en.wikipedia.org/wiki/Semi-simplicity , the definition is that every object is a direct sum of finitely many simple objects. If we remove the condition "finitely many", I agree with your comments.
$endgroup$
– user25309
Apr 13 at 15:38




$begingroup$
The issue is maybe the correct definition of "semisimple". If I look at ncatlab.org/nlab/show/semisimple+category or en.wikipedia.org/wiki/Semi-simplicity , the definition is that every object is a direct sum of finitely many simple objects. If we remove the condition "finitely many", I agree with your comments.
$endgroup$
– user25309
Apr 13 at 15:38












$begingroup$
Oh, yes. Then you are right.
$endgroup$
– Leonid Positselski
Apr 13 at 15:40




$begingroup$
Oh, yes. Then you are right.
$endgroup$
– Leonid Positselski
Apr 13 at 15:40

















draft saved

draft discarded
















































Thanks for contributing an answer to MathOverflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327961%2fsemisimplicity-of-the-category-of-coherent-sheaves%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

getting Checkpoint VPN SSL Network Extender working in the command lineHow to connect to CheckPoint VPN on Ubuntu 18.04LTS?Will the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayVPN SSL Network Extender in FirefoxLinux Checkpoint SNX tool configuration issuesCheck Point - Connect under Linux - snx + OTPSNX VPN Ububuntu 18.XXUsing Checkpoint VPN SSL Network Extender CLI with certificateVPN with network manager (nm-applet) is not workingWill the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayImport VPN config files to NetworkManager from command lineTrouble connecting to VPN using network-manager, while command line worksStart a VPN connection with PPTP protocol on command linestarting a docker service daemon breaks the vpn networkCan't connect to vpn with Network-managerVPN SSL Network Extender in FirefoxUsing Checkpoint VPN SSL Network Extender CLI with certificate

Cannot Extend partition with GParted The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Community Moderator Election ResultsCan't increase partition size with GParted?GParted doesn't recognize the unallocated space after my current partitionWhat is the best way to add unallocated space located before to Ubuntu 12.04 partition with GParted live?I can't figure out how to extend my Arch home partition into free spaceGparted Linux Mint 18.1 issueTrying to extend but swap partition is showing as Unknown in Gparted, shows proper from fdiskRearrange partitions in gparted to extend a partitionUnable to extend partition even though unallocated space is next to it using GPartedAllocate free space to root partitiongparted: how to merge unallocated space with a partition

Marilyn Monroe Ny fiainany manokana | Jereo koa | Meny fitetezanafanitarana azy.