Infinite past with a beginning? The 2019 Stack Overflow Developer Survey Results Are InDifference between 'infinite' and 'not finite'Is there any philosophical significance to the arithmetization of infinity?Cantor and infinitiesIs infinite regress of causation possible? Is infinite regress of causation necessary?Could there ever be evidence for an infinite being?Is the axiom of infinity truly an axiom?A concept in which an infinite force is also limitedHow is it possible for an infinite number of moments to have elapsed prior to now?Is actual infinity physical infinity? Or just the axiom of infinity?Can you divide the natural numbers in half sequentially?
How to notate time signature switching consistently every measure
Time travel alters history but people keep saying nothing's changed
If I score a critical hit on an 18 or higher, what are my chances of getting a critical hit if I roll 3d20?
Loose spokes after only a few rides
What tool would a Roman-age civilization have for the breaking of silver and other metals into dust?
Does a dangling wire really electrocute me if I'm standing in water?
What does Linus Torvalds mean when he says that Git "never ever" tracks a file?
Feature engineering suggestion required
How to manage monthly salary
Why was M87 targetted for the Event Horizon Telescope instead of Sagittarius A*?
"as much details as you can remember"
What is the motivation for a law requiring 2 parties to consent for recording a conversation
Return to UK after having been refused entry years ago
Delete all lines which don't have n characters before delimiter
How to answer pointed "are you quitting" questioning when I don't want them to suspect
What did it mean to "align" a radio?
Is a "Democratic" Oligarchy-Style System Possible?
Multiply Two Integer Polynomials
Which Sci-Fi work first showed weapon of galactic-scale mass destruction?
What is the most effective way of iterating a std::vector and why?
FPGA - DIY Programming
How can I autofill dates in Excel excluding Sunday?
Do these rules for Critical Successes and Critical Failures seem fair?
What is the meaning of the verb "bear" in this context?
Infinite past with a beginning?
The 2019 Stack Overflow Developer Survey Results Are InDifference between 'infinite' and 'not finite'Is there any philosophical significance to the arithmetization of infinity?Cantor and infinitiesIs infinite regress of causation possible? Is infinite regress of causation necessary?Could there ever be evidence for an infinite being?Is the axiom of infinity truly an axiom?A concept in which an infinite force is also limitedHow is it possible for an infinite number of moments to have elapsed prior to now?Is actual infinity physical infinity? Or just the axiom of infinity?Can you divide the natural numbers in half sequentially?
I can conceive of an infinite past with a beginning. I can in fact represent this idea by simple diagram, part analogical, part symbolic. So, to me, this idea is a logical possibility.
I initially believed that nearly everyone should be able to do the same. Apparently, I was wrong. Many people object to it, vehemently, on the ground that the ordinary, conventional notion of an infinite past is that of a past which is infinite precisely because it has no beginning.
So, as the argument goes, the notion of an infinite past with a beginning would be a contradiction in terms, and this even though, unlike for example "bachelor", there is no dictionary definition of "infinite past", and there is therefore no dictionary definition of an infinite past as having no beginning.
As I understand it, our initial notion of the infinite came from our sense that time is going to continue and that, therefore, it is literally not finished, i.e. in-finite, or "not complete" as some people like to put it.
Still, since more than a century ago now, mathematicians have learnt to deal with the notion of actual infinite, i.e. the notion of an infinite that would be complete. This is not necessarily the same idea as that of an infinite with a limit, though.
As I understand it, the idea of an actual infinite came as a consequence of assuming the existence of a set containing an infinite number of elements. The number of elements is infinite but the set itself contains all of them and so is an "actual" infinite. This in itself doesn't imply that the set contains a greatest or smallest element but the set is thought of as containing the entirety of an infinity of elements, which seems to imply at least that the set is indeed a "complete", or an actual, infinity.
However, it seems to me that, for example, the interval of Real numbers [0, 1] is already conceived of as an actual infinite. It of course has a "beginning" and an "end". And I think of it as commensurable to an infinite past with a beginning, or even an infinite time with both a beginning and an end.
So, how would it be necessarily illogical to think of the past as both infinite and with a beginning?
Or why would it be somehow necessary that if the past is infinite, it has no beginning?
time infinity infinite
|
show 4 more comments
I can conceive of an infinite past with a beginning. I can in fact represent this idea by simple diagram, part analogical, part symbolic. So, to me, this idea is a logical possibility.
I initially believed that nearly everyone should be able to do the same. Apparently, I was wrong. Many people object to it, vehemently, on the ground that the ordinary, conventional notion of an infinite past is that of a past which is infinite precisely because it has no beginning.
So, as the argument goes, the notion of an infinite past with a beginning would be a contradiction in terms, and this even though, unlike for example "bachelor", there is no dictionary definition of "infinite past", and there is therefore no dictionary definition of an infinite past as having no beginning.
As I understand it, our initial notion of the infinite came from our sense that time is going to continue and that, therefore, it is literally not finished, i.e. in-finite, or "not complete" as some people like to put it.
Still, since more than a century ago now, mathematicians have learnt to deal with the notion of actual infinite, i.e. the notion of an infinite that would be complete. This is not necessarily the same idea as that of an infinite with a limit, though.
As I understand it, the idea of an actual infinite came as a consequence of assuming the existence of a set containing an infinite number of elements. The number of elements is infinite but the set itself contains all of them and so is an "actual" infinite. This in itself doesn't imply that the set contains a greatest or smallest element but the set is thought of as containing the entirety of an infinity of elements, which seems to imply at least that the set is indeed a "complete", or an actual, infinity.
However, it seems to me that, for example, the interval of Real numbers [0, 1] is already conceived of as an actual infinite. It of course has a "beginning" and an "end". And I think of it as commensurable to an infinite past with a beginning, or even an infinite time with both a beginning and an end.
So, how would it be necessarily illogical to think of the past as both infinite and with a beginning?
Or why would it be somehow necessary that if the past is infinite, it has no beginning?
time infinity infinite
4
Ther are "many" concepts of infinite at play here : having an infinite number of elements (this is the post-Cantorian sense) : e.g. the set N of all natural numbers. Conceived as a single entity (as an actual infinite) it is one set with infinite many elements. The same for [0,1], but in addition it also "continuous" , i.e. we can subdivide it without end (in the Aristotelian sense) meaning that for every two numbers in it we can always find something in between (not so for two consecutive naturals in N. In addition, it is limited from below and above.
– Mauro ALLEGRANZA
Apr 7 at 13:25
2
So, it is infinite, infinitely divisible and at the same time limited. Thus the 0 of N can be thinked as the beginning of the number sequence. [0,1] instead is not a sequence with a "beginning" in the same sense. THus, what is the "correct" model of time : N, [0,1], [0, infinity], [-infinity, + infinity] ? Other ?
– Mauro ALLEGRANZA
Apr 7 at 13:26
2
I once saw a bumper sticker which read, "You don't have to believe everything you think." CS
– Charles M Saunders
Apr 7 at 17:20
1
@JohnForkosh "The interval is finite. It's the collection of real numbers in that interval which is (uncountably) infinite." Plenty of people (myself included) identify the interval with the set of points, and would phrase the finiteness claim as "the length of [0,1] is finite," or "[0,1] is bounded," or similar, but would never say "[0,1] is finite." Your usage may be different, but the OP is not "completely incorrect."
– Noah Schweber
2 days ago
1
Given your fondness of Aristotle, I am a little surprised that you are siding with Cantor against him. To Aristotle, Cantor's actual/completed infinite would have been at best a useful fiction, a manner of speaking about something else, and the real infinite can only be potential. Since speaking of infinite past seems to be speaking of reality, and not mathematical fictions, there can be no infinite past with a beginning, no matter what one can "imagine".
– Conifold
2 days ago
|
show 4 more comments
I can conceive of an infinite past with a beginning. I can in fact represent this idea by simple diagram, part analogical, part symbolic. So, to me, this idea is a logical possibility.
I initially believed that nearly everyone should be able to do the same. Apparently, I was wrong. Many people object to it, vehemently, on the ground that the ordinary, conventional notion of an infinite past is that of a past which is infinite precisely because it has no beginning.
So, as the argument goes, the notion of an infinite past with a beginning would be a contradiction in terms, and this even though, unlike for example "bachelor", there is no dictionary definition of "infinite past", and there is therefore no dictionary definition of an infinite past as having no beginning.
As I understand it, our initial notion of the infinite came from our sense that time is going to continue and that, therefore, it is literally not finished, i.e. in-finite, or "not complete" as some people like to put it.
Still, since more than a century ago now, mathematicians have learnt to deal with the notion of actual infinite, i.e. the notion of an infinite that would be complete. This is not necessarily the same idea as that of an infinite with a limit, though.
As I understand it, the idea of an actual infinite came as a consequence of assuming the existence of a set containing an infinite number of elements. The number of elements is infinite but the set itself contains all of them and so is an "actual" infinite. This in itself doesn't imply that the set contains a greatest or smallest element but the set is thought of as containing the entirety of an infinity of elements, which seems to imply at least that the set is indeed a "complete", or an actual, infinity.
However, it seems to me that, for example, the interval of Real numbers [0, 1] is already conceived of as an actual infinite. It of course has a "beginning" and an "end". And I think of it as commensurable to an infinite past with a beginning, or even an infinite time with both a beginning and an end.
So, how would it be necessarily illogical to think of the past as both infinite and with a beginning?
Or why would it be somehow necessary that if the past is infinite, it has no beginning?
time infinity infinite
I can conceive of an infinite past with a beginning. I can in fact represent this idea by simple diagram, part analogical, part symbolic. So, to me, this idea is a logical possibility.
I initially believed that nearly everyone should be able to do the same. Apparently, I was wrong. Many people object to it, vehemently, on the ground that the ordinary, conventional notion of an infinite past is that of a past which is infinite precisely because it has no beginning.
So, as the argument goes, the notion of an infinite past with a beginning would be a contradiction in terms, and this even though, unlike for example "bachelor", there is no dictionary definition of "infinite past", and there is therefore no dictionary definition of an infinite past as having no beginning.
As I understand it, our initial notion of the infinite came from our sense that time is going to continue and that, therefore, it is literally not finished, i.e. in-finite, or "not complete" as some people like to put it.
Still, since more than a century ago now, mathematicians have learnt to deal with the notion of actual infinite, i.e. the notion of an infinite that would be complete. This is not necessarily the same idea as that of an infinite with a limit, though.
As I understand it, the idea of an actual infinite came as a consequence of assuming the existence of a set containing an infinite number of elements. The number of elements is infinite but the set itself contains all of them and so is an "actual" infinite. This in itself doesn't imply that the set contains a greatest or smallest element but the set is thought of as containing the entirety of an infinity of elements, which seems to imply at least that the set is indeed a "complete", or an actual, infinity.
However, it seems to me that, for example, the interval of Real numbers [0, 1] is already conceived of as an actual infinite. It of course has a "beginning" and an "end". And I think of it as commensurable to an infinite past with a beginning, or even an infinite time with both a beginning and an end.
So, how would it be necessarily illogical to think of the past as both infinite and with a beginning?
Or why would it be somehow necessary that if the past is infinite, it has no beginning?
time infinity infinite
time infinity infinite
asked Apr 7 at 13:03
SpeakpigeonSpeakpigeon
16910
16910
4
Ther are "many" concepts of infinite at play here : having an infinite number of elements (this is the post-Cantorian sense) : e.g. the set N of all natural numbers. Conceived as a single entity (as an actual infinite) it is one set with infinite many elements. The same for [0,1], but in addition it also "continuous" , i.e. we can subdivide it without end (in the Aristotelian sense) meaning that for every two numbers in it we can always find something in between (not so for two consecutive naturals in N. In addition, it is limited from below and above.
– Mauro ALLEGRANZA
Apr 7 at 13:25
2
So, it is infinite, infinitely divisible and at the same time limited. Thus the 0 of N can be thinked as the beginning of the number sequence. [0,1] instead is not a sequence with a "beginning" in the same sense. THus, what is the "correct" model of time : N, [0,1], [0, infinity], [-infinity, + infinity] ? Other ?
– Mauro ALLEGRANZA
Apr 7 at 13:26
2
I once saw a bumper sticker which read, "You don't have to believe everything you think." CS
– Charles M Saunders
Apr 7 at 17:20
1
@JohnForkosh "The interval is finite. It's the collection of real numbers in that interval which is (uncountably) infinite." Plenty of people (myself included) identify the interval with the set of points, and would phrase the finiteness claim as "the length of [0,1] is finite," or "[0,1] is bounded," or similar, but would never say "[0,1] is finite." Your usage may be different, but the OP is not "completely incorrect."
– Noah Schweber
2 days ago
1
Given your fondness of Aristotle, I am a little surprised that you are siding with Cantor against him. To Aristotle, Cantor's actual/completed infinite would have been at best a useful fiction, a manner of speaking about something else, and the real infinite can only be potential. Since speaking of infinite past seems to be speaking of reality, and not mathematical fictions, there can be no infinite past with a beginning, no matter what one can "imagine".
– Conifold
2 days ago
|
show 4 more comments
4
Ther are "many" concepts of infinite at play here : having an infinite number of elements (this is the post-Cantorian sense) : e.g. the set N of all natural numbers. Conceived as a single entity (as an actual infinite) it is one set with infinite many elements. The same for [0,1], but in addition it also "continuous" , i.e. we can subdivide it without end (in the Aristotelian sense) meaning that for every two numbers in it we can always find something in between (not so for two consecutive naturals in N. In addition, it is limited from below and above.
– Mauro ALLEGRANZA
Apr 7 at 13:25
2
So, it is infinite, infinitely divisible and at the same time limited. Thus the 0 of N can be thinked as the beginning of the number sequence. [0,1] instead is not a sequence with a "beginning" in the same sense. THus, what is the "correct" model of time : N, [0,1], [0, infinity], [-infinity, + infinity] ? Other ?
– Mauro ALLEGRANZA
Apr 7 at 13:26
2
I once saw a bumper sticker which read, "You don't have to believe everything you think." CS
– Charles M Saunders
Apr 7 at 17:20
1
@JohnForkosh "The interval is finite. It's the collection of real numbers in that interval which is (uncountably) infinite." Plenty of people (myself included) identify the interval with the set of points, and would phrase the finiteness claim as "the length of [0,1] is finite," or "[0,1] is bounded," or similar, but would never say "[0,1] is finite." Your usage may be different, but the OP is not "completely incorrect."
– Noah Schweber
2 days ago
1
Given your fondness of Aristotle, I am a little surprised that you are siding with Cantor against him. To Aristotle, Cantor's actual/completed infinite would have been at best a useful fiction, a manner of speaking about something else, and the real infinite can only be potential. Since speaking of infinite past seems to be speaking of reality, and not mathematical fictions, there can be no infinite past with a beginning, no matter what one can "imagine".
– Conifold
2 days ago
4
4
Ther are "many" concepts of infinite at play here : having an infinite number of elements (this is the post-Cantorian sense) : e.g. the set N of all natural numbers. Conceived as a single entity (as an actual infinite) it is one set with infinite many elements. The same for [0,1], but in addition it also "continuous" , i.e. we can subdivide it without end (in the Aristotelian sense) meaning that for every two numbers in it we can always find something in between (not so for two consecutive naturals in N. In addition, it is limited from below and above.
– Mauro ALLEGRANZA
Apr 7 at 13:25
Ther are "many" concepts of infinite at play here : having an infinite number of elements (this is the post-Cantorian sense) : e.g. the set N of all natural numbers. Conceived as a single entity (as an actual infinite) it is one set with infinite many elements. The same for [0,1], but in addition it also "continuous" , i.e. we can subdivide it without end (in the Aristotelian sense) meaning that for every two numbers in it we can always find something in between (not so for two consecutive naturals in N. In addition, it is limited from below and above.
– Mauro ALLEGRANZA
Apr 7 at 13:25
2
2
So, it is infinite, infinitely divisible and at the same time limited. Thus the 0 of N can be thinked as the beginning of the number sequence. [0,1] instead is not a sequence with a "beginning" in the same sense. THus, what is the "correct" model of time : N, [0,1], [0, infinity], [-infinity, + infinity] ? Other ?
– Mauro ALLEGRANZA
Apr 7 at 13:26
So, it is infinite, infinitely divisible and at the same time limited. Thus the 0 of N can be thinked as the beginning of the number sequence. [0,1] instead is not a sequence with a "beginning" in the same sense. THus, what is the "correct" model of time : N, [0,1], [0, infinity], [-infinity, + infinity] ? Other ?
– Mauro ALLEGRANZA
Apr 7 at 13:26
2
2
I once saw a bumper sticker which read, "You don't have to believe everything you think." CS
– Charles M Saunders
Apr 7 at 17:20
I once saw a bumper sticker which read, "You don't have to believe everything you think." CS
– Charles M Saunders
Apr 7 at 17:20
1
1
@JohnForkosh "The interval is finite. It's the collection of real numbers in that interval which is (uncountably) infinite." Plenty of people (myself included) identify the interval with the set of points, and would phrase the finiteness claim as "the length of [0,1] is finite," or "[0,1] is bounded," or similar, but would never say "[0,1] is finite." Your usage may be different, but the OP is not "completely incorrect."
– Noah Schweber
2 days ago
@JohnForkosh "The interval is finite. It's the collection of real numbers in that interval which is (uncountably) infinite." Plenty of people (myself included) identify the interval with the set of points, and would phrase the finiteness claim as "the length of [0,1] is finite," or "[0,1] is bounded," or similar, but would never say "[0,1] is finite." Your usage may be different, but the OP is not "completely incorrect."
– Noah Schweber
2 days ago
1
1
Given your fondness of Aristotle, I am a little surprised that you are siding with Cantor against him. To Aristotle, Cantor's actual/completed infinite would have been at best a useful fiction, a manner of speaking about something else, and the real infinite can only be potential. Since speaking of infinite past seems to be speaking of reality, and not mathematical fictions, there can be no infinite past with a beginning, no matter what one can "imagine".
– Conifold
2 days ago
Given your fondness of Aristotle, I am a little surprised that you are siding with Cantor against him. To Aristotle, Cantor's actual/completed infinite would have been at best a useful fiction, a manner of speaking about something else, and the real infinite can only be potential. Since speaking of infinite past seems to be speaking of reality, and not mathematical fictions, there can be no infinite past with a beginning, no matter what one can "imagine".
– Conifold
2 days ago
|
show 4 more comments
5 Answers
5
active
oldest
votes
Aristotle said the past is infinite because, for any past time we can imagine an earlier one. Aristotle's arguments aside, this is what people mean when they speak of an infinite past: for any time x, there exists another time y such that y precedes x. Colloquially, "there is no first moment in time". If time has a beginning, it means that there is a time x, for which there is no time y such that y precedes x. Colloquially, "there is a first moment in time". This is a contradiction; so there cannot be both an infinite past (in the sense described above) and a first moment (a beginning).
Mauro ALLEGRANZA in his comments explains that there can be different ways something can be said to be "infinite", but in the context of philosophical arguments where an infinite past is discussed, it is probably the sense that I describe in my first paragraph.
EDIT: To expand a bit based on the comments, there are two other properties that time could possibly have, that would mean that time has an infinite number of moments, even if it did have a beginning (or even both a beginning and an end):
Time could be dense, which means that for any two times x, y, there is always a third time z, between them so that x precedes z, and z precedes y. If (the set of moments in) time is linearly ordered, then density implies that there are an infinite number of moments.
Time might be continuous or without "holes" in it, like the real number line.
Neither of these properties are what people usually mean when they say that the past is finite or infinite. Instead, they mean it like in my first paragraph. I believe when the OP is speaking about the past being "infinite", they are using it to mean something like either dense or continuous. This might be mere semantics, but once the multiple senses of "infinite" are disambiguated, the confusion and disagreement should disappear.
So, how would you call an infinite past with a beginning?
– Speakpigeon
Apr 7 at 15:05
@Speakpigeon Perhaps "dense", or "continuous"? Density states that for any two moments in time, there is another moment between them (plato.stanford.edu/entries/logic-temporal/#InsBasModFloTim). Continuity states that time is like the real number line, with no "holes" in it. Both imply there are infinitely many moments in time (if time is linear). One infinity is countable, one is not.
– Adam
Apr 7 at 15:24
1
Those two things aren't necessarily contradictions. Imagine an observer A falling into a black hole (ignore decay, we're simply after topology). To observer B, outside the black hole, it looks like it takes an infinite amount of time to fall past the event horizon. To A, nothing special happens, so he passes the horizon... but will eventually meet an end. Flip this picture around in time, and there's a beginning for A, but it's infinite for B (what's more, oddly, the beginning for A predates the projected infinity for B).
– H Walters
Apr 7 at 15:40
@HWalters Nice. I don't know enough about relativity to really comment about that, but would it mean to B, there is really no beginning of time (i.e. is there a symmetry that means your scenario can really be flipped around like that? There's something about an infinite future that doesn't seem quite as problematic as an infinite past, but maybe that's just me). I suppose my argument might presuppose a classical picture of time, which might be sufficient for the OP's purpose. If I qualified the entire argument with "in a particular reference frame" would that allow it to apply to relativity?
– Adam
Apr 7 at 16:10
2
@Speakpigeon Terms need definitions, and the definitions are what we unpack when we analyze. If you say that an infinite past has a beginning, because by infinite past you mean "infinite moments of time in the past", I have no issue with that. By your definition I suppose there's also an infinite past since two minutes ago too; seems a bit unusual to me, but you must apply your definitions consistently. I answered based on a charitable interpretation of what people mean by "infinite past" because I thought you were curious why people say that; it's because of how they define "infinite past".
– Adam
Apr 7 at 16:57
|
show 5 more comments
It depends on exactly what you mean by an infinite past.
Let's start by defining some terms so we can deal with this rigorously. Let t be an arbitrary time, and let t = 0 be the present. Any t < 0 is in the past; any t > 0 is in the future.
Let us suppose now that time has a beginning; we'll place it at t = a. There exist an infinite number of instants in time between a and 0. For example: -a/2, -a/4, -a/8, etc. For any natural number n, t = -a/(2^n) is a time after a but before 0. There are a countably infinite number of natural numbers, so there are a countably infinite number of such points. (And there are also an uncountably infinite number of points in that range that are not of the form -a/(2^n).
But we have an infinite number of elements only because we keep dividing it into smaller and smaller divisions. Suppose that instead of asking how many instants of time exist between the beginning and the present, we instead ask how many seconds there have been since the beginning of time. That number is decidedly finite.
In summary,
if there is a beginning of time, then there is a finite length of time between that beginning and the present, but we can divide that finite length into an infinite number of infinitesimal chunks. (Mathematically, anyway. Whether physics actually permits dividing it up that much is an open question.)
to get to your conclusion you are assuming a huge amount of things you don't state. Why can't time be a union of two infinities the first of which has a beginning? Throughout your answer you seem to assume time must be constrained to the reals yet you don't state that as an assumption.
– DRF
2 days ago
@DRF If time is the union of two sets, A and B, and there exists a lower bound b_0 s.t. for all b in B, b_0 <= b, and there does not exist such a bound for A, then there also does not exist such a bound for (A union B). Either of those sets may contain an infinite amount of elements (and indeed, b_0 may be an exclusive lower bound), but that doesn't change the fact that there exists a lower bound for the union of them.
– Ray
2 days ago
@DRF I do sort of assume that t is real-valued (actually just rational, for most of the answer), but that fits with how we measure time in reality. When speaking of something happening x seconds ago, only real values make sense (usually). But the core assumption isn't "real numbers", but some set for which there exists a total ordering and for which the exists a time between any two other times. Any set+operators for which those properties hold will work here. (As an example, some relativistic formulations express time as an imaginary number (always with a 0 real-component, though))
– Ray
2 days ago
That is not true. You can have a set which is totally ordered and dense, has a minimal element and infinitely many predecessors. Take a copy of the reals (1 times mathbbR) and a copy of the positive reals (0times [0,infty) ) order them lexicographically and you have a something that is totally ordered and any element in the second part has infinitely many predecessors in the first part.
– DRF
2 days ago
@DRF True; I'll admit I didn't consider lexicographic ordering as a possibility here. But what do the elements of that set represent in this context? If I say "5 seconds after the epoch", is that (0,5) or (1,5)? Is there a way to make that set meaningful when describing time without first establishing a bijection between it and the reals? And if we do establish that bijection, wouldn't the ordering established by the < operator over the reals then be the ordering that would be useful for comparing times?
– Ray
2 days ago
|
show 2 more comments
To answer this, we need to visit Hilbert's hotel.
It's an infinitely long corridor with an infinite number of rooms, and an infinite number of guests.
One day an extra guest turns up and wants a room. Hilbert can't send him down the corridor - it will take literally forever. So he asks all the guests to move one room down the corridor. The guest in room 1 moves into room 2, the guest in room 2 moves into room 3, and so on.
We can see that, while it was already an infinity, this does not mean that it can't be incremented by 1. An infinity does not necessarily equal another infinity.
What if an infinitely big coach turns up with an infinite number of guests? That's ok: you just ask all the existing guests to move into the next even-numbered rooms. The guest in 1 moves into 2, the guest in 2 moves into 4, the guest in 3 moves into 6, the guest in 4 moves into 8, and so on.
Now you have an infinity which is twice as big as it was before.
The point here: something can have a beginning and still be infinite. It can start at zero and go all the way up to a positive infinity. It doesn't have to start from a negative infinity, or even from zero. Can you start at 100 and count infinitely upward? Yes, of course you can. It's infinite as long as it doesn't have an end.
The stumbling block here is that, conventionally thought of, the past does have an end: the present. So there can be an infinite period of time with a beginning, but it has to stretch out into the future as well.
New contributor
1
Okay, you've explained how there can be an infinite past with an end, but not, I don't think, an infinite past with a beginning.
– curiousdannii
Apr 7 at 21:45
2
The problem is that Hilbert's hotel is well ordered because the rooms are numbered like the naturals. A well order is defined to not have an infinite descending chain. OP wants an infinite descending chain.
– Ross Millikan
Apr 8 at 2:28
That's what I'm saying: you can have an infinite period of time with a beginning OR with an end, but not both.
– Ne Mo
2 days ago
@rossMillikan I don't see why you need no infinite descending chains. More specifically you have infinite descending chains in $mathbbQ$ which is likely to be a standard model for time anyway (or $mathbbR$). You can easilly think take a well order with a beginning and infinitely many predecessors (note that being well ordered doesn't mean there aren't infinitely many predecessors just that there isn't an infinite descending chain) just take $omega_1$ or if you want a beginning and an end take $omega_1+1$
– DRF
2 days ago
add a comment |
The term time, like temperature, implies basically two concepts: the concept addressed in physics, relativity, etc., and the feeling that we have of an ordered sequence of events. Let's start with the second.
Kant proposed that time and space were synthetic a priori knowledge, that means that our knowledge of space and time is not obtained from experience, but it is us that create them in order to have an understanding our environment. In such sense, time is just one of multiple ideas that allow our perception to be organized. Space is similar. Both are not really physical realities, but moreover mental features that our understanding of reality lie upon. Time and space are just possible due to our memory.
What would be the physical concept, in such case? Basically, mathematics and physics are a set of formalized rules that we can apply to perception, not to reality, and work perfectly! When we add or count 1+1=2 apples, all operations are performed in the realm of subjective perception, not in reality, and work absolutely fine. In reality, counting apples would be like counting clouds in a rainy dark night, since apples or clouds are just massive amounts of atomic interactions. In other words, any result depends on the subject, not on reality.
So, blending both ideas, your perception of time has a beginning: your first memories; and it has an end: now. But if we recur to the rules of mathematics and physics, it is clear that there seems not to be a beginning or an end, since due to mathematics we can always think of a previous moment to any beginning, or a future instant of any ending. But even physically, there seems to exist an instant where time appeared, instants after the big-bang, or an ending of the universe, where entropy will reach its maximum. Yes. But our perception can be contradictory with what mathematics and physics state, and that is completely normal. For example, that's the main issue with quantum mechanics. We cannot fully understand what physical and mathematical formulas state [1]. There's a lot of things out there that we cannot understand, even having the mathematical formulas that describe such reality.
That is the problem that you are confronting, and you're not the only one. And such incoherences of reality and perception (Kant's noumena and phenomena) are just part of the current challenges in philosophy and science.
[1] https://www.sciencenews.org/blog/context/tom%E2%80%99s-top-10-interpretations-quantum-mechanics
"We cannot fully understand what physical and mathematical formulas state": It would be more precise to say that we understand fully what the formulae state, but there exist multiple realities that are consistent with those formulae, in much the same way that we understand 3 < n < 6, but can't say whether n is 4 or 5.
– Ray
2 days ago
add a comment |
We can simply define a set called the negatively extended integers. It consists of the usual integers plus a, which is like minus infinity. We then define that a is less than all the usual integers. Now a is the minimum of our set, so it is the beginning. At any point of the set that is not a there are infinitely many predecessors. This is a fine totally ordered (as times should be) set that meets your requirement. We can extend the reals the same way.
This doesn't work. -infinity is not the direct predecessor of any negative integer. You can't start at -1, say, and work your way back to the beginning.
– user4894
Apr 8 at 2:47
@user4894: I didn't see that we were asked for that. In fact, we can't have it. We want infinitely many predecessors of -1, so we can't get to the beginning. I have both a beginning and infinitely many predecessors of -1.
– Ross Millikan
Apr 8 at 2:50
The negative integers give you infinitely many predecessors. The point at -infinity makes no philosophical difference. It's not the beginning because it has only finitely many successors that can be reached by steps. And it's not anyone's predecessor. Your point at -inf doesn't help.
– user4894
2 days ago
@user4894 Just add a whole positive real line before the negative real line. That get's you everything you want. I.e. $0times[0,infty) cup 1times mathbbR$. Now 0 has infinitely many successors the whole thing is totally ordered and you have a beginning.
– DRF
2 days ago
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "265"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphilosophy.stackexchange.com%2fquestions%2f61678%2finfinite-past-with-a-beginning%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
Aristotle said the past is infinite because, for any past time we can imagine an earlier one. Aristotle's arguments aside, this is what people mean when they speak of an infinite past: for any time x, there exists another time y such that y precedes x. Colloquially, "there is no first moment in time". If time has a beginning, it means that there is a time x, for which there is no time y such that y precedes x. Colloquially, "there is a first moment in time". This is a contradiction; so there cannot be both an infinite past (in the sense described above) and a first moment (a beginning).
Mauro ALLEGRANZA in his comments explains that there can be different ways something can be said to be "infinite", but in the context of philosophical arguments where an infinite past is discussed, it is probably the sense that I describe in my first paragraph.
EDIT: To expand a bit based on the comments, there are two other properties that time could possibly have, that would mean that time has an infinite number of moments, even if it did have a beginning (or even both a beginning and an end):
Time could be dense, which means that for any two times x, y, there is always a third time z, between them so that x precedes z, and z precedes y. If (the set of moments in) time is linearly ordered, then density implies that there are an infinite number of moments.
Time might be continuous or without "holes" in it, like the real number line.
Neither of these properties are what people usually mean when they say that the past is finite or infinite. Instead, they mean it like in my first paragraph. I believe when the OP is speaking about the past being "infinite", they are using it to mean something like either dense or continuous. This might be mere semantics, but once the multiple senses of "infinite" are disambiguated, the confusion and disagreement should disappear.
So, how would you call an infinite past with a beginning?
– Speakpigeon
Apr 7 at 15:05
@Speakpigeon Perhaps "dense", or "continuous"? Density states that for any two moments in time, there is another moment between them (plato.stanford.edu/entries/logic-temporal/#InsBasModFloTim). Continuity states that time is like the real number line, with no "holes" in it. Both imply there are infinitely many moments in time (if time is linear). One infinity is countable, one is not.
– Adam
Apr 7 at 15:24
1
Those two things aren't necessarily contradictions. Imagine an observer A falling into a black hole (ignore decay, we're simply after topology). To observer B, outside the black hole, it looks like it takes an infinite amount of time to fall past the event horizon. To A, nothing special happens, so he passes the horizon... but will eventually meet an end. Flip this picture around in time, and there's a beginning for A, but it's infinite for B (what's more, oddly, the beginning for A predates the projected infinity for B).
– H Walters
Apr 7 at 15:40
@HWalters Nice. I don't know enough about relativity to really comment about that, but would it mean to B, there is really no beginning of time (i.e. is there a symmetry that means your scenario can really be flipped around like that? There's something about an infinite future that doesn't seem quite as problematic as an infinite past, but maybe that's just me). I suppose my argument might presuppose a classical picture of time, which might be sufficient for the OP's purpose. If I qualified the entire argument with "in a particular reference frame" would that allow it to apply to relativity?
– Adam
Apr 7 at 16:10
2
@Speakpigeon Terms need definitions, and the definitions are what we unpack when we analyze. If you say that an infinite past has a beginning, because by infinite past you mean "infinite moments of time in the past", I have no issue with that. By your definition I suppose there's also an infinite past since two minutes ago too; seems a bit unusual to me, but you must apply your definitions consistently. I answered based on a charitable interpretation of what people mean by "infinite past" because I thought you were curious why people say that; it's because of how they define "infinite past".
– Adam
Apr 7 at 16:57
|
show 5 more comments
Aristotle said the past is infinite because, for any past time we can imagine an earlier one. Aristotle's arguments aside, this is what people mean when they speak of an infinite past: for any time x, there exists another time y such that y precedes x. Colloquially, "there is no first moment in time". If time has a beginning, it means that there is a time x, for which there is no time y such that y precedes x. Colloquially, "there is a first moment in time". This is a contradiction; so there cannot be both an infinite past (in the sense described above) and a first moment (a beginning).
Mauro ALLEGRANZA in his comments explains that there can be different ways something can be said to be "infinite", but in the context of philosophical arguments where an infinite past is discussed, it is probably the sense that I describe in my first paragraph.
EDIT: To expand a bit based on the comments, there are two other properties that time could possibly have, that would mean that time has an infinite number of moments, even if it did have a beginning (or even both a beginning and an end):
Time could be dense, which means that for any two times x, y, there is always a third time z, between them so that x precedes z, and z precedes y. If (the set of moments in) time is linearly ordered, then density implies that there are an infinite number of moments.
Time might be continuous or without "holes" in it, like the real number line.
Neither of these properties are what people usually mean when they say that the past is finite or infinite. Instead, they mean it like in my first paragraph. I believe when the OP is speaking about the past being "infinite", they are using it to mean something like either dense or continuous. This might be mere semantics, but once the multiple senses of "infinite" are disambiguated, the confusion and disagreement should disappear.
So, how would you call an infinite past with a beginning?
– Speakpigeon
Apr 7 at 15:05
@Speakpigeon Perhaps "dense", or "continuous"? Density states that for any two moments in time, there is another moment between them (plato.stanford.edu/entries/logic-temporal/#InsBasModFloTim). Continuity states that time is like the real number line, with no "holes" in it. Both imply there are infinitely many moments in time (if time is linear). One infinity is countable, one is not.
– Adam
Apr 7 at 15:24
1
Those two things aren't necessarily contradictions. Imagine an observer A falling into a black hole (ignore decay, we're simply after topology). To observer B, outside the black hole, it looks like it takes an infinite amount of time to fall past the event horizon. To A, nothing special happens, so he passes the horizon... but will eventually meet an end. Flip this picture around in time, and there's a beginning for A, but it's infinite for B (what's more, oddly, the beginning for A predates the projected infinity for B).
– H Walters
Apr 7 at 15:40
@HWalters Nice. I don't know enough about relativity to really comment about that, but would it mean to B, there is really no beginning of time (i.e. is there a symmetry that means your scenario can really be flipped around like that? There's something about an infinite future that doesn't seem quite as problematic as an infinite past, but maybe that's just me). I suppose my argument might presuppose a classical picture of time, which might be sufficient for the OP's purpose. If I qualified the entire argument with "in a particular reference frame" would that allow it to apply to relativity?
– Adam
Apr 7 at 16:10
2
@Speakpigeon Terms need definitions, and the definitions are what we unpack when we analyze. If you say that an infinite past has a beginning, because by infinite past you mean "infinite moments of time in the past", I have no issue with that. By your definition I suppose there's also an infinite past since two minutes ago too; seems a bit unusual to me, but you must apply your definitions consistently. I answered based on a charitable interpretation of what people mean by "infinite past" because I thought you were curious why people say that; it's because of how they define "infinite past".
– Adam
Apr 7 at 16:57
|
show 5 more comments
Aristotle said the past is infinite because, for any past time we can imagine an earlier one. Aristotle's arguments aside, this is what people mean when they speak of an infinite past: for any time x, there exists another time y such that y precedes x. Colloquially, "there is no first moment in time". If time has a beginning, it means that there is a time x, for which there is no time y such that y precedes x. Colloquially, "there is a first moment in time". This is a contradiction; so there cannot be both an infinite past (in the sense described above) and a first moment (a beginning).
Mauro ALLEGRANZA in his comments explains that there can be different ways something can be said to be "infinite", but in the context of philosophical arguments where an infinite past is discussed, it is probably the sense that I describe in my first paragraph.
EDIT: To expand a bit based on the comments, there are two other properties that time could possibly have, that would mean that time has an infinite number of moments, even if it did have a beginning (or even both a beginning and an end):
Time could be dense, which means that for any two times x, y, there is always a third time z, between them so that x precedes z, and z precedes y. If (the set of moments in) time is linearly ordered, then density implies that there are an infinite number of moments.
Time might be continuous or without "holes" in it, like the real number line.
Neither of these properties are what people usually mean when they say that the past is finite or infinite. Instead, they mean it like in my first paragraph. I believe when the OP is speaking about the past being "infinite", they are using it to mean something like either dense or continuous. This might be mere semantics, but once the multiple senses of "infinite" are disambiguated, the confusion and disagreement should disappear.
Aristotle said the past is infinite because, for any past time we can imagine an earlier one. Aristotle's arguments aside, this is what people mean when they speak of an infinite past: for any time x, there exists another time y such that y precedes x. Colloquially, "there is no first moment in time". If time has a beginning, it means that there is a time x, for which there is no time y such that y precedes x. Colloquially, "there is a first moment in time". This is a contradiction; so there cannot be both an infinite past (in the sense described above) and a first moment (a beginning).
Mauro ALLEGRANZA in his comments explains that there can be different ways something can be said to be "infinite", but in the context of philosophical arguments where an infinite past is discussed, it is probably the sense that I describe in my first paragraph.
EDIT: To expand a bit based on the comments, there are two other properties that time could possibly have, that would mean that time has an infinite number of moments, even if it did have a beginning (or even both a beginning and an end):
Time could be dense, which means that for any two times x, y, there is always a third time z, between them so that x precedes z, and z precedes y. If (the set of moments in) time is linearly ordered, then density implies that there are an infinite number of moments.
Time might be continuous or without "holes" in it, like the real number line.
Neither of these properties are what people usually mean when they say that the past is finite or infinite. Instead, they mean it like in my first paragraph. I believe when the OP is speaking about the past being "infinite", they are using it to mean something like either dense or continuous. This might be mere semantics, but once the multiple senses of "infinite" are disambiguated, the confusion and disagreement should disappear.
edited 2 days ago
answered Apr 7 at 14:27
AdamAdam
652110
652110
So, how would you call an infinite past with a beginning?
– Speakpigeon
Apr 7 at 15:05
@Speakpigeon Perhaps "dense", or "continuous"? Density states that for any two moments in time, there is another moment between them (plato.stanford.edu/entries/logic-temporal/#InsBasModFloTim). Continuity states that time is like the real number line, with no "holes" in it. Both imply there are infinitely many moments in time (if time is linear). One infinity is countable, one is not.
– Adam
Apr 7 at 15:24
1
Those two things aren't necessarily contradictions. Imagine an observer A falling into a black hole (ignore decay, we're simply after topology). To observer B, outside the black hole, it looks like it takes an infinite amount of time to fall past the event horizon. To A, nothing special happens, so he passes the horizon... but will eventually meet an end. Flip this picture around in time, and there's a beginning for A, but it's infinite for B (what's more, oddly, the beginning for A predates the projected infinity for B).
– H Walters
Apr 7 at 15:40
@HWalters Nice. I don't know enough about relativity to really comment about that, but would it mean to B, there is really no beginning of time (i.e. is there a symmetry that means your scenario can really be flipped around like that? There's something about an infinite future that doesn't seem quite as problematic as an infinite past, but maybe that's just me). I suppose my argument might presuppose a classical picture of time, which might be sufficient for the OP's purpose. If I qualified the entire argument with "in a particular reference frame" would that allow it to apply to relativity?
– Adam
Apr 7 at 16:10
2
@Speakpigeon Terms need definitions, and the definitions are what we unpack when we analyze. If you say that an infinite past has a beginning, because by infinite past you mean "infinite moments of time in the past", I have no issue with that. By your definition I suppose there's also an infinite past since two minutes ago too; seems a bit unusual to me, but you must apply your definitions consistently. I answered based on a charitable interpretation of what people mean by "infinite past" because I thought you were curious why people say that; it's because of how they define "infinite past".
– Adam
Apr 7 at 16:57
|
show 5 more comments
So, how would you call an infinite past with a beginning?
– Speakpigeon
Apr 7 at 15:05
@Speakpigeon Perhaps "dense", or "continuous"? Density states that for any two moments in time, there is another moment between them (plato.stanford.edu/entries/logic-temporal/#InsBasModFloTim). Continuity states that time is like the real number line, with no "holes" in it. Both imply there are infinitely many moments in time (if time is linear). One infinity is countable, one is not.
– Adam
Apr 7 at 15:24
1
Those two things aren't necessarily contradictions. Imagine an observer A falling into a black hole (ignore decay, we're simply after topology). To observer B, outside the black hole, it looks like it takes an infinite amount of time to fall past the event horizon. To A, nothing special happens, so he passes the horizon... but will eventually meet an end. Flip this picture around in time, and there's a beginning for A, but it's infinite for B (what's more, oddly, the beginning for A predates the projected infinity for B).
– H Walters
Apr 7 at 15:40
@HWalters Nice. I don't know enough about relativity to really comment about that, but would it mean to B, there is really no beginning of time (i.e. is there a symmetry that means your scenario can really be flipped around like that? There's something about an infinite future that doesn't seem quite as problematic as an infinite past, but maybe that's just me). I suppose my argument might presuppose a classical picture of time, which might be sufficient for the OP's purpose. If I qualified the entire argument with "in a particular reference frame" would that allow it to apply to relativity?
– Adam
Apr 7 at 16:10
2
@Speakpigeon Terms need definitions, and the definitions are what we unpack when we analyze. If you say that an infinite past has a beginning, because by infinite past you mean "infinite moments of time in the past", I have no issue with that. By your definition I suppose there's also an infinite past since two minutes ago too; seems a bit unusual to me, but you must apply your definitions consistently. I answered based on a charitable interpretation of what people mean by "infinite past" because I thought you were curious why people say that; it's because of how they define "infinite past".
– Adam
Apr 7 at 16:57
So, how would you call an infinite past with a beginning?
– Speakpigeon
Apr 7 at 15:05
So, how would you call an infinite past with a beginning?
– Speakpigeon
Apr 7 at 15:05
@Speakpigeon Perhaps "dense", or "continuous"? Density states that for any two moments in time, there is another moment between them (plato.stanford.edu/entries/logic-temporal/#InsBasModFloTim). Continuity states that time is like the real number line, with no "holes" in it. Both imply there are infinitely many moments in time (if time is linear). One infinity is countable, one is not.
– Adam
Apr 7 at 15:24
@Speakpigeon Perhaps "dense", or "continuous"? Density states that for any two moments in time, there is another moment between them (plato.stanford.edu/entries/logic-temporal/#InsBasModFloTim). Continuity states that time is like the real number line, with no "holes" in it. Both imply there are infinitely many moments in time (if time is linear). One infinity is countable, one is not.
– Adam
Apr 7 at 15:24
1
1
Those two things aren't necessarily contradictions. Imagine an observer A falling into a black hole (ignore decay, we're simply after topology). To observer B, outside the black hole, it looks like it takes an infinite amount of time to fall past the event horizon. To A, nothing special happens, so he passes the horizon... but will eventually meet an end. Flip this picture around in time, and there's a beginning for A, but it's infinite for B (what's more, oddly, the beginning for A predates the projected infinity for B).
– H Walters
Apr 7 at 15:40
Those two things aren't necessarily contradictions. Imagine an observer A falling into a black hole (ignore decay, we're simply after topology). To observer B, outside the black hole, it looks like it takes an infinite amount of time to fall past the event horizon. To A, nothing special happens, so he passes the horizon... but will eventually meet an end. Flip this picture around in time, and there's a beginning for A, but it's infinite for B (what's more, oddly, the beginning for A predates the projected infinity for B).
– H Walters
Apr 7 at 15:40
@HWalters Nice. I don't know enough about relativity to really comment about that, but would it mean to B, there is really no beginning of time (i.e. is there a symmetry that means your scenario can really be flipped around like that? There's something about an infinite future that doesn't seem quite as problematic as an infinite past, but maybe that's just me). I suppose my argument might presuppose a classical picture of time, which might be sufficient for the OP's purpose. If I qualified the entire argument with "in a particular reference frame" would that allow it to apply to relativity?
– Adam
Apr 7 at 16:10
@HWalters Nice. I don't know enough about relativity to really comment about that, but would it mean to B, there is really no beginning of time (i.e. is there a symmetry that means your scenario can really be flipped around like that? There's something about an infinite future that doesn't seem quite as problematic as an infinite past, but maybe that's just me). I suppose my argument might presuppose a classical picture of time, which might be sufficient for the OP's purpose. If I qualified the entire argument with "in a particular reference frame" would that allow it to apply to relativity?
– Adam
Apr 7 at 16:10
2
2
@Speakpigeon Terms need definitions, and the definitions are what we unpack when we analyze. If you say that an infinite past has a beginning, because by infinite past you mean "infinite moments of time in the past", I have no issue with that. By your definition I suppose there's also an infinite past since two minutes ago too; seems a bit unusual to me, but you must apply your definitions consistently. I answered based on a charitable interpretation of what people mean by "infinite past" because I thought you were curious why people say that; it's because of how they define "infinite past".
– Adam
Apr 7 at 16:57
@Speakpigeon Terms need definitions, and the definitions are what we unpack when we analyze. If you say that an infinite past has a beginning, because by infinite past you mean "infinite moments of time in the past", I have no issue with that. By your definition I suppose there's also an infinite past since two minutes ago too; seems a bit unusual to me, but you must apply your definitions consistently. I answered based on a charitable interpretation of what people mean by "infinite past" because I thought you were curious why people say that; it's because of how they define "infinite past".
– Adam
Apr 7 at 16:57
|
show 5 more comments
It depends on exactly what you mean by an infinite past.
Let's start by defining some terms so we can deal with this rigorously. Let t be an arbitrary time, and let t = 0 be the present. Any t < 0 is in the past; any t > 0 is in the future.
Let us suppose now that time has a beginning; we'll place it at t = a. There exist an infinite number of instants in time between a and 0. For example: -a/2, -a/4, -a/8, etc. For any natural number n, t = -a/(2^n) is a time after a but before 0. There are a countably infinite number of natural numbers, so there are a countably infinite number of such points. (And there are also an uncountably infinite number of points in that range that are not of the form -a/(2^n).
But we have an infinite number of elements only because we keep dividing it into smaller and smaller divisions. Suppose that instead of asking how many instants of time exist between the beginning and the present, we instead ask how many seconds there have been since the beginning of time. That number is decidedly finite.
In summary,
if there is a beginning of time, then there is a finite length of time between that beginning and the present, but we can divide that finite length into an infinite number of infinitesimal chunks. (Mathematically, anyway. Whether physics actually permits dividing it up that much is an open question.)
to get to your conclusion you are assuming a huge amount of things you don't state. Why can't time be a union of two infinities the first of which has a beginning? Throughout your answer you seem to assume time must be constrained to the reals yet you don't state that as an assumption.
– DRF
2 days ago
@DRF If time is the union of two sets, A and B, and there exists a lower bound b_0 s.t. for all b in B, b_0 <= b, and there does not exist such a bound for A, then there also does not exist such a bound for (A union B). Either of those sets may contain an infinite amount of elements (and indeed, b_0 may be an exclusive lower bound), but that doesn't change the fact that there exists a lower bound for the union of them.
– Ray
2 days ago
@DRF I do sort of assume that t is real-valued (actually just rational, for most of the answer), but that fits with how we measure time in reality. When speaking of something happening x seconds ago, only real values make sense (usually). But the core assumption isn't "real numbers", but some set for which there exists a total ordering and for which the exists a time between any two other times. Any set+operators for which those properties hold will work here. (As an example, some relativistic formulations express time as an imaginary number (always with a 0 real-component, though))
– Ray
2 days ago
That is not true. You can have a set which is totally ordered and dense, has a minimal element and infinitely many predecessors. Take a copy of the reals (1 times mathbbR) and a copy of the positive reals (0times [0,infty) ) order them lexicographically and you have a something that is totally ordered and any element in the second part has infinitely many predecessors in the first part.
– DRF
2 days ago
@DRF True; I'll admit I didn't consider lexicographic ordering as a possibility here. But what do the elements of that set represent in this context? If I say "5 seconds after the epoch", is that (0,5) or (1,5)? Is there a way to make that set meaningful when describing time without first establishing a bijection between it and the reals? And if we do establish that bijection, wouldn't the ordering established by the < operator over the reals then be the ordering that would be useful for comparing times?
– Ray
2 days ago
|
show 2 more comments
It depends on exactly what you mean by an infinite past.
Let's start by defining some terms so we can deal with this rigorously. Let t be an arbitrary time, and let t = 0 be the present. Any t < 0 is in the past; any t > 0 is in the future.
Let us suppose now that time has a beginning; we'll place it at t = a. There exist an infinite number of instants in time between a and 0. For example: -a/2, -a/4, -a/8, etc. For any natural number n, t = -a/(2^n) is a time after a but before 0. There are a countably infinite number of natural numbers, so there are a countably infinite number of such points. (And there are also an uncountably infinite number of points in that range that are not of the form -a/(2^n).
But we have an infinite number of elements only because we keep dividing it into smaller and smaller divisions. Suppose that instead of asking how many instants of time exist between the beginning and the present, we instead ask how many seconds there have been since the beginning of time. That number is decidedly finite.
In summary,
if there is a beginning of time, then there is a finite length of time between that beginning and the present, but we can divide that finite length into an infinite number of infinitesimal chunks. (Mathematically, anyway. Whether physics actually permits dividing it up that much is an open question.)
to get to your conclusion you are assuming a huge amount of things you don't state. Why can't time be a union of two infinities the first of which has a beginning? Throughout your answer you seem to assume time must be constrained to the reals yet you don't state that as an assumption.
– DRF
2 days ago
@DRF If time is the union of two sets, A and B, and there exists a lower bound b_0 s.t. for all b in B, b_0 <= b, and there does not exist such a bound for A, then there also does not exist such a bound for (A union B). Either of those sets may contain an infinite amount of elements (and indeed, b_0 may be an exclusive lower bound), but that doesn't change the fact that there exists a lower bound for the union of them.
– Ray
2 days ago
@DRF I do sort of assume that t is real-valued (actually just rational, for most of the answer), but that fits with how we measure time in reality. When speaking of something happening x seconds ago, only real values make sense (usually). But the core assumption isn't "real numbers", but some set for which there exists a total ordering and for which the exists a time between any two other times. Any set+operators for which those properties hold will work here. (As an example, some relativistic formulations express time as an imaginary number (always with a 0 real-component, though))
– Ray
2 days ago
That is not true. You can have a set which is totally ordered and dense, has a minimal element and infinitely many predecessors. Take a copy of the reals (1 times mathbbR) and a copy of the positive reals (0times [0,infty) ) order them lexicographically and you have a something that is totally ordered and any element in the second part has infinitely many predecessors in the first part.
– DRF
2 days ago
@DRF True; I'll admit I didn't consider lexicographic ordering as a possibility here. But what do the elements of that set represent in this context? If I say "5 seconds after the epoch", is that (0,5) or (1,5)? Is there a way to make that set meaningful when describing time without first establishing a bijection between it and the reals? And if we do establish that bijection, wouldn't the ordering established by the < operator over the reals then be the ordering that would be useful for comparing times?
– Ray
2 days ago
|
show 2 more comments
It depends on exactly what you mean by an infinite past.
Let's start by defining some terms so we can deal with this rigorously. Let t be an arbitrary time, and let t = 0 be the present. Any t < 0 is in the past; any t > 0 is in the future.
Let us suppose now that time has a beginning; we'll place it at t = a. There exist an infinite number of instants in time between a and 0. For example: -a/2, -a/4, -a/8, etc. For any natural number n, t = -a/(2^n) is a time after a but before 0. There are a countably infinite number of natural numbers, so there are a countably infinite number of such points. (And there are also an uncountably infinite number of points in that range that are not of the form -a/(2^n).
But we have an infinite number of elements only because we keep dividing it into smaller and smaller divisions. Suppose that instead of asking how many instants of time exist between the beginning and the present, we instead ask how many seconds there have been since the beginning of time. That number is decidedly finite.
In summary,
if there is a beginning of time, then there is a finite length of time between that beginning and the present, but we can divide that finite length into an infinite number of infinitesimal chunks. (Mathematically, anyway. Whether physics actually permits dividing it up that much is an open question.)
It depends on exactly what you mean by an infinite past.
Let's start by defining some terms so we can deal with this rigorously. Let t be an arbitrary time, and let t = 0 be the present. Any t < 0 is in the past; any t > 0 is in the future.
Let us suppose now that time has a beginning; we'll place it at t = a. There exist an infinite number of instants in time between a and 0. For example: -a/2, -a/4, -a/8, etc. For any natural number n, t = -a/(2^n) is a time after a but before 0. There are a countably infinite number of natural numbers, so there are a countably infinite number of such points. (And there are also an uncountably infinite number of points in that range that are not of the form -a/(2^n).
But we have an infinite number of elements only because we keep dividing it into smaller and smaller divisions. Suppose that instead of asking how many instants of time exist between the beginning and the present, we instead ask how many seconds there have been since the beginning of time. That number is decidedly finite.
In summary,
if there is a beginning of time, then there is a finite length of time between that beginning and the present, but we can divide that finite length into an infinite number of infinitesimal chunks. (Mathematically, anyway. Whether physics actually permits dividing it up that much is an open question.)
answered Apr 7 at 22:26
RayRay
23617
23617
to get to your conclusion you are assuming a huge amount of things you don't state. Why can't time be a union of two infinities the first of which has a beginning? Throughout your answer you seem to assume time must be constrained to the reals yet you don't state that as an assumption.
– DRF
2 days ago
@DRF If time is the union of two sets, A and B, and there exists a lower bound b_0 s.t. for all b in B, b_0 <= b, and there does not exist such a bound for A, then there also does not exist such a bound for (A union B). Either of those sets may contain an infinite amount of elements (and indeed, b_0 may be an exclusive lower bound), but that doesn't change the fact that there exists a lower bound for the union of them.
– Ray
2 days ago
@DRF I do sort of assume that t is real-valued (actually just rational, for most of the answer), but that fits with how we measure time in reality. When speaking of something happening x seconds ago, only real values make sense (usually). But the core assumption isn't "real numbers", but some set for which there exists a total ordering and for which the exists a time between any two other times. Any set+operators for which those properties hold will work here. (As an example, some relativistic formulations express time as an imaginary number (always with a 0 real-component, though))
– Ray
2 days ago
That is not true. You can have a set which is totally ordered and dense, has a minimal element and infinitely many predecessors. Take a copy of the reals (1 times mathbbR) and a copy of the positive reals (0times [0,infty) ) order them lexicographically and you have a something that is totally ordered and any element in the second part has infinitely many predecessors in the first part.
– DRF
2 days ago
@DRF True; I'll admit I didn't consider lexicographic ordering as a possibility here. But what do the elements of that set represent in this context? If I say "5 seconds after the epoch", is that (0,5) or (1,5)? Is there a way to make that set meaningful when describing time without first establishing a bijection between it and the reals? And if we do establish that bijection, wouldn't the ordering established by the < operator over the reals then be the ordering that would be useful for comparing times?
– Ray
2 days ago
|
show 2 more comments
to get to your conclusion you are assuming a huge amount of things you don't state. Why can't time be a union of two infinities the first of which has a beginning? Throughout your answer you seem to assume time must be constrained to the reals yet you don't state that as an assumption.
– DRF
2 days ago
@DRF If time is the union of two sets, A and B, and there exists a lower bound b_0 s.t. for all b in B, b_0 <= b, and there does not exist such a bound for A, then there also does not exist such a bound for (A union B). Either of those sets may contain an infinite amount of elements (and indeed, b_0 may be an exclusive lower bound), but that doesn't change the fact that there exists a lower bound for the union of them.
– Ray
2 days ago
@DRF I do sort of assume that t is real-valued (actually just rational, for most of the answer), but that fits with how we measure time in reality. When speaking of something happening x seconds ago, only real values make sense (usually). But the core assumption isn't "real numbers", but some set for which there exists a total ordering and for which the exists a time between any two other times. Any set+operators for which those properties hold will work here. (As an example, some relativistic formulations express time as an imaginary number (always with a 0 real-component, though))
– Ray
2 days ago
That is not true. You can have a set which is totally ordered and dense, has a minimal element and infinitely many predecessors. Take a copy of the reals (1 times mathbbR) and a copy of the positive reals (0times [0,infty) ) order them lexicographically and you have a something that is totally ordered and any element in the second part has infinitely many predecessors in the first part.
– DRF
2 days ago
@DRF True; I'll admit I didn't consider lexicographic ordering as a possibility here. But what do the elements of that set represent in this context? If I say "5 seconds after the epoch", is that (0,5) or (1,5)? Is there a way to make that set meaningful when describing time without first establishing a bijection between it and the reals? And if we do establish that bijection, wouldn't the ordering established by the < operator over the reals then be the ordering that would be useful for comparing times?
– Ray
2 days ago
to get to your conclusion you are assuming a huge amount of things you don't state. Why can't time be a union of two infinities the first of which has a beginning? Throughout your answer you seem to assume time must be constrained to the reals yet you don't state that as an assumption.
– DRF
2 days ago
to get to your conclusion you are assuming a huge amount of things you don't state. Why can't time be a union of two infinities the first of which has a beginning? Throughout your answer you seem to assume time must be constrained to the reals yet you don't state that as an assumption.
– DRF
2 days ago
@DRF If time is the union of two sets, A and B, and there exists a lower bound b_0 s.t. for all b in B, b_0 <= b, and there does not exist such a bound for A, then there also does not exist such a bound for (A union B). Either of those sets may contain an infinite amount of elements (and indeed, b_0 may be an exclusive lower bound), but that doesn't change the fact that there exists a lower bound for the union of them.
– Ray
2 days ago
@DRF If time is the union of two sets, A and B, and there exists a lower bound b_0 s.t. for all b in B, b_0 <= b, and there does not exist such a bound for A, then there also does not exist such a bound for (A union B). Either of those sets may contain an infinite amount of elements (and indeed, b_0 may be an exclusive lower bound), but that doesn't change the fact that there exists a lower bound for the union of them.
– Ray
2 days ago
@DRF I do sort of assume that t is real-valued (actually just rational, for most of the answer), but that fits with how we measure time in reality. When speaking of something happening x seconds ago, only real values make sense (usually). But the core assumption isn't "real numbers", but some set for which there exists a total ordering and for which the exists a time between any two other times. Any set+operators for which those properties hold will work here. (As an example, some relativistic formulations express time as an imaginary number (always with a 0 real-component, though))
– Ray
2 days ago
@DRF I do sort of assume that t is real-valued (actually just rational, for most of the answer), but that fits with how we measure time in reality. When speaking of something happening x seconds ago, only real values make sense (usually). But the core assumption isn't "real numbers", but some set for which there exists a total ordering and for which the exists a time between any two other times. Any set+operators for which those properties hold will work here. (As an example, some relativistic formulations express time as an imaginary number (always with a 0 real-component, though))
– Ray
2 days ago
That is not true. You can have a set which is totally ordered and dense, has a minimal element and infinitely many predecessors. Take a copy of the reals (1 times mathbbR) and a copy of the positive reals (0times [0,infty) ) order them lexicographically and you have a something that is totally ordered and any element in the second part has infinitely many predecessors in the first part.
– DRF
2 days ago
That is not true. You can have a set which is totally ordered and dense, has a minimal element and infinitely many predecessors. Take a copy of the reals (1 times mathbbR) and a copy of the positive reals (0times [0,infty) ) order them lexicographically and you have a something that is totally ordered and any element in the second part has infinitely many predecessors in the first part.
– DRF
2 days ago
@DRF True; I'll admit I didn't consider lexicographic ordering as a possibility here. But what do the elements of that set represent in this context? If I say "5 seconds after the epoch", is that (0,5) or (1,5)? Is there a way to make that set meaningful when describing time without first establishing a bijection between it and the reals? And if we do establish that bijection, wouldn't the ordering established by the < operator over the reals then be the ordering that would be useful for comparing times?
– Ray
2 days ago
@DRF True; I'll admit I didn't consider lexicographic ordering as a possibility here. But what do the elements of that set represent in this context? If I say "5 seconds after the epoch", is that (0,5) or (1,5)? Is there a way to make that set meaningful when describing time without first establishing a bijection between it and the reals? And if we do establish that bijection, wouldn't the ordering established by the < operator over the reals then be the ordering that would be useful for comparing times?
– Ray
2 days ago
|
show 2 more comments
To answer this, we need to visit Hilbert's hotel.
It's an infinitely long corridor with an infinite number of rooms, and an infinite number of guests.
One day an extra guest turns up and wants a room. Hilbert can't send him down the corridor - it will take literally forever. So he asks all the guests to move one room down the corridor. The guest in room 1 moves into room 2, the guest in room 2 moves into room 3, and so on.
We can see that, while it was already an infinity, this does not mean that it can't be incremented by 1. An infinity does not necessarily equal another infinity.
What if an infinitely big coach turns up with an infinite number of guests? That's ok: you just ask all the existing guests to move into the next even-numbered rooms. The guest in 1 moves into 2, the guest in 2 moves into 4, the guest in 3 moves into 6, the guest in 4 moves into 8, and so on.
Now you have an infinity which is twice as big as it was before.
The point here: something can have a beginning and still be infinite. It can start at zero and go all the way up to a positive infinity. It doesn't have to start from a negative infinity, or even from zero. Can you start at 100 and count infinitely upward? Yes, of course you can. It's infinite as long as it doesn't have an end.
The stumbling block here is that, conventionally thought of, the past does have an end: the present. So there can be an infinite period of time with a beginning, but it has to stretch out into the future as well.
New contributor
1
Okay, you've explained how there can be an infinite past with an end, but not, I don't think, an infinite past with a beginning.
– curiousdannii
Apr 7 at 21:45
2
The problem is that Hilbert's hotel is well ordered because the rooms are numbered like the naturals. A well order is defined to not have an infinite descending chain. OP wants an infinite descending chain.
– Ross Millikan
Apr 8 at 2:28
That's what I'm saying: you can have an infinite period of time with a beginning OR with an end, but not both.
– Ne Mo
2 days ago
@rossMillikan I don't see why you need no infinite descending chains. More specifically you have infinite descending chains in $mathbbQ$ which is likely to be a standard model for time anyway (or $mathbbR$). You can easilly think take a well order with a beginning and infinitely many predecessors (note that being well ordered doesn't mean there aren't infinitely many predecessors just that there isn't an infinite descending chain) just take $omega_1$ or if you want a beginning and an end take $omega_1+1$
– DRF
2 days ago
add a comment |
To answer this, we need to visit Hilbert's hotel.
It's an infinitely long corridor with an infinite number of rooms, and an infinite number of guests.
One day an extra guest turns up and wants a room. Hilbert can't send him down the corridor - it will take literally forever. So he asks all the guests to move one room down the corridor. The guest in room 1 moves into room 2, the guest in room 2 moves into room 3, and so on.
We can see that, while it was already an infinity, this does not mean that it can't be incremented by 1. An infinity does not necessarily equal another infinity.
What if an infinitely big coach turns up with an infinite number of guests? That's ok: you just ask all the existing guests to move into the next even-numbered rooms. The guest in 1 moves into 2, the guest in 2 moves into 4, the guest in 3 moves into 6, the guest in 4 moves into 8, and so on.
Now you have an infinity which is twice as big as it was before.
The point here: something can have a beginning and still be infinite. It can start at zero and go all the way up to a positive infinity. It doesn't have to start from a negative infinity, or even from zero. Can you start at 100 and count infinitely upward? Yes, of course you can. It's infinite as long as it doesn't have an end.
The stumbling block here is that, conventionally thought of, the past does have an end: the present. So there can be an infinite period of time with a beginning, but it has to stretch out into the future as well.
New contributor
1
Okay, you've explained how there can be an infinite past with an end, but not, I don't think, an infinite past with a beginning.
– curiousdannii
Apr 7 at 21:45
2
The problem is that Hilbert's hotel is well ordered because the rooms are numbered like the naturals. A well order is defined to not have an infinite descending chain. OP wants an infinite descending chain.
– Ross Millikan
Apr 8 at 2:28
That's what I'm saying: you can have an infinite period of time with a beginning OR with an end, but not both.
– Ne Mo
2 days ago
@rossMillikan I don't see why you need no infinite descending chains. More specifically you have infinite descending chains in $mathbbQ$ which is likely to be a standard model for time anyway (or $mathbbR$). You can easilly think take a well order with a beginning and infinitely many predecessors (note that being well ordered doesn't mean there aren't infinitely many predecessors just that there isn't an infinite descending chain) just take $omega_1$ or if you want a beginning and an end take $omega_1+1$
– DRF
2 days ago
add a comment |
To answer this, we need to visit Hilbert's hotel.
It's an infinitely long corridor with an infinite number of rooms, and an infinite number of guests.
One day an extra guest turns up and wants a room. Hilbert can't send him down the corridor - it will take literally forever. So he asks all the guests to move one room down the corridor. The guest in room 1 moves into room 2, the guest in room 2 moves into room 3, and so on.
We can see that, while it was already an infinity, this does not mean that it can't be incremented by 1. An infinity does not necessarily equal another infinity.
What if an infinitely big coach turns up with an infinite number of guests? That's ok: you just ask all the existing guests to move into the next even-numbered rooms. The guest in 1 moves into 2, the guest in 2 moves into 4, the guest in 3 moves into 6, the guest in 4 moves into 8, and so on.
Now you have an infinity which is twice as big as it was before.
The point here: something can have a beginning and still be infinite. It can start at zero and go all the way up to a positive infinity. It doesn't have to start from a negative infinity, or even from zero. Can you start at 100 and count infinitely upward? Yes, of course you can. It's infinite as long as it doesn't have an end.
The stumbling block here is that, conventionally thought of, the past does have an end: the present. So there can be an infinite period of time with a beginning, but it has to stretch out into the future as well.
New contributor
To answer this, we need to visit Hilbert's hotel.
It's an infinitely long corridor with an infinite number of rooms, and an infinite number of guests.
One day an extra guest turns up and wants a room. Hilbert can't send him down the corridor - it will take literally forever. So he asks all the guests to move one room down the corridor. The guest in room 1 moves into room 2, the guest in room 2 moves into room 3, and so on.
We can see that, while it was already an infinity, this does not mean that it can't be incremented by 1. An infinity does not necessarily equal another infinity.
What if an infinitely big coach turns up with an infinite number of guests? That's ok: you just ask all the existing guests to move into the next even-numbered rooms. The guest in 1 moves into 2, the guest in 2 moves into 4, the guest in 3 moves into 6, the guest in 4 moves into 8, and so on.
Now you have an infinity which is twice as big as it was before.
The point here: something can have a beginning and still be infinite. It can start at zero and go all the way up to a positive infinity. It doesn't have to start from a negative infinity, or even from zero. Can you start at 100 and count infinitely upward? Yes, of course you can. It's infinite as long as it doesn't have an end.
The stumbling block here is that, conventionally thought of, the past does have an end: the present. So there can be an infinite period of time with a beginning, but it has to stretch out into the future as well.
New contributor
New contributor
answered Apr 7 at 18:20
Ne MoNe Mo
1092
1092
New contributor
New contributor
1
Okay, you've explained how there can be an infinite past with an end, but not, I don't think, an infinite past with a beginning.
– curiousdannii
Apr 7 at 21:45
2
The problem is that Hilbert's hotel is well ordered because the rooms are numbered like the naturals. A well order is defined to not have an infinite descending chain. OP wants an infinite descending chain.
– Ross Millikan
Apr 8 at 2:28
That's what I'm saying: you can have an infinite period of time with a beginning OR with an end, but not both.
– Ne Mo
2 days ago
@rossMillikan I don't see why you need no infinite descending chains. More specifically you have infinite descending chains in $mathbbQ$ which is likely to be a standard model for time anyway (or $mathbbR$). You can easilly think take a well order with a beginning and infinitely many predecessors (note that being well ordered doesn't mean there aren't infinitely many predecessors just that there isn't an infinite descending chain) just take $omega_1$ or if you want a beginning and an end take $omega_1+1$
– DRF
2 days ago
add a comment |
1
Okay, you've explained how there can be an infinite past with an end, but not, I don't think, an infinite past with a beginning.
– curiousdannii
Apr 7 at 21:45
2
The problem is that Hilbert's hotel is well ordered because the rooms are numbered like the naturals. A well order is defined to not have an infinite descending chain. OP wants an infinite descending chain.
– Ross Millikan
Apr 8 at 2:28
That's what I'm saying: you can have an infinite period of time with a beginning OR with an end, but not both.
– Ne Mo
2 days ago
@rossMillikan I don't see why you need no infinite descending chains. More specifically you have infinite descending chains in $mathbbQ$ which is likely to be a standard model for time anyway (or $mathbbR$). You can easilly think take a well order with a beginning and infinitely many predecessors (note that being well ordered doesn't mean there aren't infinitely many predecessors just that there isn't an infinite descending chain) just take $omega_1$ or if you want a beginning and an end take $omega_1+1$
– DRF
2 days ago
1
1
Okay, you've explained how there can be an infinite past with an end, but not, I don't think, an infinite past with a beginning.
– curiousdannii
Apr 7 at 21:45
Okay, you've explained how there can be an infinite past with an end, but not, I don't think, an infinite past with a beginning.
– curiousdannii
Apr 7 at 21:45
2
2
The problem is that Hilbert's hotel is well ordered because the rooms are numbered like the naturals. A well order is defined to not have an infinite descending chain. OP wants an infinite descending chain.
– Ross Millikan
Apr 8 at 2:28
The problem is that Hilbert's hotel is well ordered because the rooms are numbered like the naturals. A well order is defined to not have an infinite descending chain. OP wants an infinite descending chain.
– Ross Millikan
Apr 8 at 2:28
That's what I'm saying: you can have an infinite period of time with a beginning OR with an end, but not both.
– Ne Mo
2 days ago
That's what I'm saying: you can have an infinite period of time with a beginning OR with an end, but not both.
– Ne Mo
2 days ago
@rossMillikan I don't see why you need no infinite descending chains. More specifically you have infinite descending chains in $mathbbQ$ which is likely to be a standard model for time anyway (or $mathbbR$). You can easilly think take a well order with a beginning and infinitely many predecessors (note that being well ordered doesn't mean there aren't infinitely many predecessors just that there isn't an infinite descending chain) just take $omega_1$ or if you want a beginning and an end take $omega_1+1$
– DRF
2 days ago
@rossMillikan I don't see why you need no infinite descending chains. More specifically you have infinite descending chains in $mathbbQ$ which is likely to be a standard model for time anyway (or $mathbbR$). You can easilly think take a well order with a beginning and infinitely many predecessors (note that being well ordered doesn't mean there aren't infinitely many predecessors just that there isn't an infinite descending chain) just take $omega_1$ or if you want a beginning and an end take $omega_1+1$
– DRF
2 days ago
add a comment |
The term time, like temperature, implies basically two concepts: the concept addressed in physics, relativity, etc., and the feeling that we have of an ordered sequence of events. Let's start with the second.
Kant proposed that time and space were synthetic a priori knowledge, that means that our knowledge of space and time is not obtained from experience, but it is us that create them in order to have an understanding our environment. In such sense, time is just one of multiple ideas that allow our perception to be organized. Space is similar. Both are not really physical realities, but moreover mental features that our understanding of reality lie upon. Time and space are just possible due to our memory.
What would be the physical concept, in such case? Basically, mathematics and physics are a set of formalized rules that we can apply to perception, not to reality, and work perfectly! When we add or count 1+1=2 apples, all operations are performed in the realm of subjective perception, not in reality, and work absolutely fine. In reality, counting apples would be like counting clouds in a rainy dark night, since apples or clouds are just massive amounts of atomic interactions. In other words, any result depends on the subject, not on reality.
So, blending both ideas, your perception of time has a beginning: your first memories; and it has an end: now. But if we recur to the rules of mathematics and physics, it is clear that there seems not to be a beginning or an end, since due to mathematics we can always think of a previous moment to any beginning, or a future instant of any ending. But even physically, there seems to exist an instant where time appeared, instants after the big-bang, or an ending of the universe, where entropy will reach its maximum. Yes. But our perception can be contradictory with what mathematics and physics state, and that is completely normal. For example, that's the main issue with quantum mechanics. We cannot fully understand what physical and mathematical formulas state [1]. There's a lot of things out there that we cannot understand, even having the mathematical formulas that describe such reality.
That is the problem that you are confronting, and you're not the only one. And such incoherences of reality and perception (Kant's noumena and phenomena) are just part of the current challenges in philosophy and science.
[1] https://www.sciencenews.org/blog/context/tom%E2%80%99s-top-10-interpretations-quantum-mechanics
"We cannot fully understand what physical and mathematical formulas state": It would be more precise to say that we understand fully what the formulae state, but there exist multiple realities that are consistent with those formulae, in much the same way that we understand 3 < n < 6, but can't say whether n is 4 or 5.
– Ray
2 days ago
add a comment |
The term time, like temperature, implies basically two concepts: the concept addressed in physics, relativity, etc., and the feeling that we have of an ordered sequence of events. Let's start with the second.
Kant proposed that time and space were synthetic a priori knowledge, that means that our knowledge of space and time is not obtained from experience, but it is us that create them in order to have an understanding our environment. In such sense, time is just one of multiple ideas that allow our perception to be organized. Space is similar. Both are not really physical realities, but moreover mental features that our understanding of reality lie upon. Time and space are just possible due to our memory.
What would be the physical concept, in such case? Basically, mathematics and physics are a set of formalized rules that we can apply to perception, not to reality, and work perfectly! When we add or count 1+1=2 apples, all operations are performed in the realm of subjective perception, not in reality, and work absolutely fine. In reality, counting apples would be like counting clouds in a rainy dark night, since apples or clouds are just massive amounts of atomic interactions. In other words, any result depends on the subject, not on reality.
So, blending both ideas, your perception of time has a beginning: your first memories; and it has an end: now. But if we recur to the rules of mathematics and physics, it is clear that there seems not to be a beginning or an end, since due to mathematics we can always think of a previous moment to any beginning, or a future instant of any ending. But even physically, there seems to exist an instant where time appeared, instants after the big-bang, or an ending of the universe, where entropy will reach its maximum. Yes. But our perception can be contradictory with what mathematics and physics state, and that is completely normal. For example, that's the main issue with quantum mechanics. We cannot fully understand what physical and mathematical formulas state [1]. There's a lot of things out there that we cannot understand, even having the mathematical formulas that describe such reality.
That is the problem that you are confronting, and you're not the only one. And such incoherences of reality and perception (Kant's noumena and phenomena) are just part of the current challenges in philosophy and science.
[1] https://www.sciencenews.org/blog/context/tom%E2%80%99s-top-10-interpretations-quantum-mechanics
"We cannot fully understand what physical and mathematical formulas state": It would be more precise to say that we understand fully what the formulae state, but there exist multiple realities that are consistent with those formulae, in much the same way that we understand 3 < n < 6, but can't say whether n is 4 or 5.
– Ray
2 days ago
add a comment |
The term time, like temperature, implies basically two concepts: the concept addressed in physics, relativity, etc., and the feeling that we have of an ordered sequence of events. Let's start with the second.
Kant proposed that time and space were synthetic a priori knowledge, that means that our knowledge of space and time is not obtained from experience, but it is us that create them in order to have an understanding our environment. In such sense, time is just one of multiple ideas that allow our perception to be organized. Space is similar. Both are not really physical realities, but moreover mental features that our understanding of reality lie upon. Time and space are just possible due to our memory.
What would be the physical concept, in such case? Basically, mathematics and physics are a set of formalized rules that we can apply to perception, not to reality, and work perfectly! When we add or count 1+1=2 apples, all operations are performed in the realm of subjective perception, not in reality, and work absolutely fine. In reality, counting apples would be like counting clouds in a rainy dark night, since apples or clouds are just massive amounts of atomic interactions. In other words, any result depends on the subject, not on reality.
So, blending both ideas, your perception of time has a beginning: your first memories; and it has an end: now. But if we recur to the rules of mathematics and physics, it is clear that there seems not to be a beginning or an end, since due to mathematics we can always think of a previous moment to any beginning, or a future instant of any ending. But even physically, there seems to exist an instant where time appeared, instants after the big-bang, or an ending of the universe, where entropy will reach its maximum. Yes. But our perception can be contradictory with what mathematics and physics state, and that is completely normal. For example, that's the main issue with quantum mechanics. We cannot fully understand what physical and mathematical formulas state [1]. There's a lot of things out there that we cannot understand, even having the mathematical formulas that describe such reality.
That is the problem that you are confronting, and you're not the only one. And such incoherences of reality and perception (Kant's noumena and phenomena) are just part of the current challenges in philosophy and science.
[1] https://www.sciencenews.org/blog/context/tom%E2%80%99s-top-10-interpretations-quantum-mechanics
The term time, like temperature, implies basically two concepts: the concept addressed in physics, relativity, etc., and the feeling that we have of an ordered sequence of events. Let's start with the second.
Kant proposed that time and space were synthetic a priori knowledge, that means that our knowledge of space and time is not obtained from experience, but it is us that create them in order to have an understanding our environment. In such sense, time is just one of multiple ideas that allow our perception to be organized. Space is similar. Both are not really physical realities, but moreover mental features that our understanding of reality lie upon. Time and space are just possible due to our memory.
What would be the physical concept, in such case? Basically, mathematics and physics are a set of formalized rules that we can apply to perception, not to reality, and work perfectly! When we add or count 1+1=2 apples, all operations are performed in the realm of subjective perception, not in reality, and work absolutely fine. In reality, counting apples would be like counting clouds in a rainy dark night, since apples or clouds are just massive amounts of atomic interactions. In other words, any result depends on the subject, not on reality.
So, blending both ideas, your perception of time has a beginning: your first memories; and it has an end: now. But if we recur to the rules of mathematics and physics, it is clear that there seems not to be a beginning or an end, since due to mathematics we can always think of a previous moment to any beginning, or a future instant of any ending. But even physically, there seems to exist an instant where time appeared, instants after the big-bang, or an ending of the universe, where entropy will reach its maximum. Yes. But our perception can be contradictory with what mathematics and physics state, and that is completely normal. For example, that's the main issue with quantum mechanics. We cannot fully understand what physical and mathematical formulas state [1]. There's a lot of things out there that we cannot understand, even having the mathematical formulas that describe such reality.
That is the problem that you are confronting, and you're not the only one. And such incoherences of reality and perception (Kant's noumena and phenomena) are just part of the current challenges in philosophy and science.
[1] https://www.sciencenews.org/blog/context/tom%E2%80%99s-top-10-interpretations-quantum-mechanics
answered Apr 8 at 4:42
RodolfoAPRodolfoAP
1,056412
1,056412
"We cannot fully understand what physical and mathematical formulas state": It would be more precise to say that we understand fully what the formulae state, but there exist multiple realities that are consistent with those formulae, in much the same way that we understand 3 < n < 6, but can't say whether n is 4 or 5.
– Ray
2 days ago
add a comment |
"We cannot fully understand what physical and mathematical formulas state": It would be more precise to say that we understand fully what the formulae state, but there exist multiple realities that are consistent with those formulae, in much the same way that we understand 3 < n < 6, but can't say whether n is 4 or 5.
– Ray
2 days ago
"We cannot fully understand what physical and mathematical formulas state": It would be more precise to say that we understand fully what the formulae state, but there exist multiple realities that are consistent with those formulae, in much the same way that we understand 3 < n < 6, but can't say whether n is 4 or 5.
– Ray
2 days ago
"We cannot fully understand what physical and mathematical formulas state": It would be more precise to say that we understand fully what the formulae state, but there exist multiple realities that are consistent with those formulae, in much the same way that we understand 3 < n < 6, but can't say whether n is 4 or 5.
– Ray
2 days ago
add a comment |
We can simply define a set called the negatively extended integers. It consists of the usual integers plus a, which is like minus infinity. We then define that a is less than all the usual integers. Now a is the minimum of our set, so it is the beginning. At any point of the set that is not a there are infinitely many predecessors. This is a fine totally ordered (as times should be) set that meets your requirement. We can extend the reals the same way.
This doesn't work. -infinity is not the direct predecessor of any negative integer. You can't start at -1, say, and work your way back to the beginning.
– user4894
Apr 8 at 2:47
@user4894: I didn't see that we were asked for that. In fact, we can't have it. We want infinitely many predecessors of -1, so we can't get to the beginning. I have both a beginning and infinitely many predecessors of -1.
– Ross Millikan
Apr 8 at 2:50
The negative integers give you infinitely many predecessors. The point at -infinity makes no philosophical difference. It's not the beginning because it has only finitely many successors that can be reached by steps. And it's not anyone's predecessor. Your point at -inf doesn't help.
– user4894
2 days ago
@user4894 Just add a whole positive real line before the negative real line. That get's you everything you want. I.e. $0times[0,infty) cup 1times mathbbR$. Now 0 has infinitely many successors the whole thing is totally ordered and you have a beginning.
– DRF
2 days ago
add a comment |
We can simply define a set called the negatively extended integers. It consists of the usual integers plus a, which is like minus infinity. We then define that a is less than all the usual integers. Now a is the minimum of our set, so it is the beginning. At any point of the set that is not a there are infinitely many predecessors. This is a fine totally ordered (as times should be) set that meets your requirement. We can extend the reals the same way.
This doesn't work. -infinity is not the direct predecessor of any negative integer. You can't start at -1, say, and work your way back to the beginning.
– user4894
Apr 8 at 2:47
@user4894: I didn't see that we were asked for that. In fact, we can't have it. We want infinitely many predecessors of -1, so we can't get to the beginning. I have both a beginning and infinitely many predecessors of -1.
– Ross Millikan
Apr 8 at 2:50
The negative integers give you infinitely many predecessors. The point at -infinity makes no philosophical difference. It's not the beginning because it has only finitely many successors that can be reached by steps. And it's not anyone's predecessor. Your point at -inf doesn't help.
– user4894
2 days ago
@user4894 Just add a whole positive real line before the negative real line. That get's you everything you want. I.e. $0times[0,infty) cup 1times mathbbR$. Now 0 has infinitely many successors the whole thing is totally ordered and you have a beginning.
– DRF
2 days ago
add a comment |
We can simply define a set called the negatively extended integers. It consists of the usual integers plus a, which is like minus infinity. We then define that a is less than all the usual integers. Now a is the minimum of our set, so it is the beginning. At any point of the set that is not a there are infinitely many predecessors. This is a fine totally ordered (as times should be) set that meets your requirement. We can extend the reals the same way.
We can simply define a set called the negatively extended integers. It consists of the usual integers plus a, which is like minus infinity. We then define that a is less than all the usual integers. Now a is the minimum of our set, so it is the beginning. At any point of the set that is not a there are infinitely many predecessors. This is a fine totally ordered (as times should be) set that meets your requirement. We can extend the reals the same way.
edited 2 days ago
answered Apr 8 at 2:23
Ross MillikanRoss Millikan
1704
1704
This doesn't work. -infinity is not the direct predecessor of any negative integer. You can't start at -1, say, and work your way back to the beginning.
– user4894
Apr 8 at 2:47
@user4894: I didn't see that we were asked for that. In fact, we can't have it. We want infinitely many predecessors of -1, so we can't get to the beginning. I have both a beginning and infinitely many predecessors of -1.
– Ross Millikan
Apr 8 at 2:50
The negative integers give you infinitely many predecessors. The point at -infinity makes no philosophical difference. It's not the beginning because it has only finitely many successors that can be reached by steps. And it's not anyone's predecessor. Your point at -inf doesn't help.
– user4894
2 days ago
@user4894 Just add a whole positive real line before the negative real line. That get's you everything you want. I.e. $0times[0,infty) cup 1times mathbbR$. Now 0 has infinitely many successors the whole thing is totally ordered and you have a beginning.
– DRF
2 days ago
add a comment |
This doesn't work. -infinity is not the direct predecessor of any negative integer. You can't start at -1, say, and work your way back to the beginning.
– user4894
Apr 8 at 2:47
@user4894: I didn't see that we were asked for that. In fact, we can't have it. We want infinitely many predecessors of -1, so we can't get to the beginning. I have both a beginning and infinitely many predecessors of -1.
– Ross Millikan
Apr 8 at 2:50
The negative integers give you infinitely many predecessors. The point at -infinity makes no philosophical difference. It's not the beginning because it has only finitely many successors that can be reached by steps. And it's not anyone's predecessor. Your point at -inf doesn't help.
– user4894
2 days ago
@user4894 Just add a whole positive real line before the negative real line. That get's you everything you want. I.e. $0times[0,infty) cup 1times mathbbR$. Now 0 has infinitely many successors the whole thing is totally ordered and you have a beginning.
– DRF
2 days ago
This doesn't work. -infinity is not the direct predecessor of any negative integer. You can't start at -1, say, and work your way back to the beginning.
– user4894
Apr 8 at 2:47
This doesn't work. -infinity is not the direct predecessor of any negative integer. You can't start at -1, say, and work your way back to the beginning.
– user4894
Apr 8 at 2:47
@user4894: I didn't see that we were asked for that. In fact, we can't have it. We want infinitely many predecessors of -1, so we can't get to the beginning. I have both a beginning and infinitely many predecessors of -1.
– Ross Millikan
Apr 8 at 2:50
@user4894: I didn't see that we were asked for that. In fact, we can't have it. We want infinitely many predecessors of -1, so we can't get to the beginning. I have both a beginning and infinitely many predecessors of -1.
– Ross Millikan
Apr 8 at 2:50
The negative integers give you infinitely many predecessors. The point at -infinity makes no philosophical difference. It's not the beginning because it has only finitely many successors that can be reached by steps. And it's not anyone's predecessor. Your point at -inf doesn't help.
– user4894
2 days ago
The negative integers give you infinitely many predecessors. The point at -infinity makes no philosophical difference. It's not the beginning because it has only finitely many successors that can be reached by steps. And it's not anyone's predecessor. Your point at -inf doesn't help.
– user4894
2 days ago
@user4894 Just add a whole positive real line before the negative real line. That get's you everything you want. I.e. $0times[0,infty) cup 1times mathbbR$. Now 0 has infinitely many successors the whole thing is totally ordered and you have a beginning.
– DRF
2 days ago
@user4894 Just add a whole positive real line before the negative real line. That get's you everything you want. I.e. $0times[0,infty) cup 1times mathbbR$. Now 0 has infinitely many successors the whole thing is totally ordered and you have a beginning.
– DRF
2 days ago
add a comment |
Thanks for contributing an answer to Philosophy Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphilosophy.stackexchange.com%2fquestions%2f61678%2finfinite-past-with-a-beginning%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
Ther are "many" concepts of infinite at play here : having an infinite number of elements (this is the post-Cantorian sense) : e.g. the set N of all natural numbers. Conceived as a single entity (as an actual infinite) it is one set with infinite many elements. The same for [0,1], but in addition it also "continuous" , i.e. we can subdivide it without end (in the Aristotelian sense) meaning that for every two numbers in it we can always find something in between (not so for two consecutive naturals in N. In addition, it is limited from below and above.
– Mauro ALLEGRANZA
Apr 7 at 13:25
2
So, it is infinite, infinitely divisible and at the same time limited. Thus the 0 of N can be thinked as the beginning of the number sequence. [0,1] instead is not a sequence with a "beginning" in the same sense. THus, what is the "correct" model of time : N, [0,1], [0, infinity], [-infinity, + infinity] ? Other ?
– Mauro ALLEGRANZA
Apr 7 at 13:26
2
I once saw a bumper sticker which read, "You don't have to believe everything you think." CS
– Charles M Saunders
Apr 7 at 17:20
1
@JohnForkosh "The interval is finite. It's the collection of real numbers in that interval which is (uncountably) infinite." Plenty of people (myself included) identify the interval with the set of points, and would phrase the finiteness claim as "the length of [0,1] is finite," or "[0,1] is bounded," or similar, but would never say "[0,1] is finite." Your usage may be different, but the OP is not "completely incorrect."
– Noah Schweber
2 days ago
1
Given your fondness of Aristotle, I am a little surprised that you are siding with Cantor against him. To Aristotle, Cantor's actual/completed infinite would have been at best a useful fiction, a manner of speaking about something else, and the real infinite can only be potential. Since speaking of infinite past seems to be speaking of reality, and not mathematical fictions, there can be no infinite past with a beginning, no matter what one can "imagine".
– Conifold
2 days ago