Show a continuous function with $f(x)=y$ and $f(y)=x$ has a fixed point. The 2019 Stack Overflow Developer Survey Results Are InShow that any continuous $f:[0,1] rightarrow [0,1]$ has a fixed point $zeta$Fixed point and period of continuous functionContinuous decreasing function has a fixed pointIVT and fixed point theorem$f$ is continuous, $f : X to X$, $X$ compact, and $f$ has an $epsilon$-fixed point for each $epsilon > 0$. Show $f$ has a fixed point.Showing that $f$ has a fixed point.Prove that a continuous function has a fixed pointContinuous function and fixed pointProve that $f:[0,1] to [0,1]$ has a fixed pointFor a continuous function $f$ satisfying $f(f(x))=x$ has exactly one fixed point

Why isn't airport relocation done gradually?

A poker game description that does not feel gimmicky

The difference between dialogue marks

What are the motivations for publishing new editions of an existing textbook, beyond new discoveries in a field?

Can one be advised by a professor who is very far away?

Why is the Constellation's nose gear so long?

Is a "Democratic" Oligarchy-Style System Possible?

Why didn't the Event Horizon Telescope team mention Sagittarius A*?

FPGA - DIY Programming

Is there a symbol for a right arrow with a square in the middle?

Why do UK politicians seemingly ignore opinion polls on Brexit?

Is bread bad for ducks?

Return to UK after being refused entry years previously

How come people say “Would of”?

Can a flute soloist sit?

How to notate time signature switching consistently every measure

What is the motivation for a law requiring 2 parties to consent for recording a conversation

Geography at the pixel level

What is the meaning of Triage in Cybersec world?

Am I thawing this London Broil safely?

Deal with toxic manager when you can't quit

Is there any way to tell whether the shot is going to hit you or not?

How are circuits which use complex ICs normally simulated?

Which Sci-Fi work first showed weapon of galactic-scale mass destruction?



Show a continuous function with $f(x)=y$ and $f(y)=x$ has a fixed point.



The 2019 Stack Overflow Developer Survey Results Are InShow that any continuous $f:[0,1] rightarrow [0,1]$ has a fixed point $zeta$Fixed point and period of continuous functionContinuous decreasing function has a fixed pointIVT and fixed point theorem$f$ is continuous, $f : X to X$, $X$ compact, and $f$ has an $epsilon$-fixed point for each $epsilon > 0$. Show $f$ has a fixed point.Showing that $f$ has a fixed point.Prove that a continuous function has a fixed pointContinuous function and fixed pointProve that $f:[0,1] to [0,1]$ has a fixed pointFor a continuous function $f$ satisfying $f(f(x))=x$ has exactly one fixed point










3












$begingroup$


Suppose $a<b$ and $f:[a,b] to [a,b]$ be continous. Suppose that $x neq y$ in $[a,b]$ with $f(x)=y$ and $f(y)=x$. Prove that $f$ has a fixed point in $(x,y)$.



So I was thinking of considering the function $g(x)=f(x)-x$, which we know is continuous. Then we also know that because $f(a) geq a$ that $g(a)=f(a)-a geq 0$. Similarly, because $f(b) leq b$ then $g(b)=f(b)-b leq 0$.



Can we just use the fact that because $g(x)$ is continuous, $0 in [g(b),g(a)]$, the IVT says there exists $c in [a,b]$ such that $g(c)=f(c)-c=0$ so $f(c)=c$? Then we know $c$ is a fixed point.



How do we show that $c$ is in $(x,y)$??



We know that $g(x)=f(x)-x=y-x neq 0$
and $g(y)=f(y)-y=x-y neq 0$ but we don't know that those are in $(a,b)$?










share|cite|improve this question











$endgroup$
















    3












    $begingroup$


    Suppose $a<b$ and $f:[a,b] to [a,b]$ be continous. Suppose that $x neq y$ in $[a,b]$ with $f(x)=y$ and $f(y)=x$. Prove that $f$ has a fixed point in $(x,y)$.



    So I was thinking of considering the function $g(x)=f(x)-x$, which we know is continuous. Then we also know that because $f(a) geq a$ that $g(a)=f(a)-a geq 0$. Similarly, because $f(b) leq b$ then $g(b)=f(b)-b leq 0$.



    Can we just use the fact that because $g(x)$ is continuous, $0 in [g(b),g(a)]$, the IVT says there exists $c in [a,b]$ such that $g(c)=f(c)-c=0$ so $f(c)=c$? Then we know $c$ is a fixed point.



    How do we show that $c$ is in $(x,y)$??



    We know that $g(x)=f(x)-x=y-x neq 0$
    and $g(y)=f(y)-y=x-y neq 0$ but we don't know that those are in $(a,b)$?










    share|cite|improve this question











    $endgroup$














      3












      3








      3





      $begingroup$


      Suppose $a<b$ and $f:[a,b] to [a,b]$ be continous. Suppose that $x neq y$ in $[a,b]$ with $f(x)=y$ and $f(y)=x$. Prove that $f$ has a fixed point in $(x,y)$.



      So I was thinking of considering the function $g(x)=f(x)-x$, which we know is continuous. Then we also know that because $f(a) geq a$ that $g(a)=f(a)-a geq 0$. Similarly, because $f(b) leq b$ then $g(b)=f(b)-b leq 0$.



      Can we just use the fact that because $g(x)$ is continuous, $0 in [g(b),g(a)]$, the IVT says there exists $c in [a,b]$ such that $g(c)=f(c)-c=0$ so $f(c)=c$? Then we know $c$ is a fixed point.



      How do we show that $c$ is in $(x,y)$??



      We know that $g(x)=f(x)-x=y-x neq 0$
      and $g(y)=f(y)-y=x-y neq 0$ but we don't know that those are in $(a,b)$?










      share|cite|improve this question











      $endgroup$




      Suppose $a<b$ and $f:[a,b] to [a,b]$ be continous. Suppose that $x neq y$ in $[a,b]$ with $f(x)=y$ and $f(y)=x$. Prove that $f$ has a fixed point in $(x,y)$.



      So I was thinking of considering the function $g(x)=f(x)-x$, which we know is continuous. Then we also know that because $f(a) geq a$ that $g(a)=f(a)-a geq 0$. Similarly, because $f(b) leq b$ then $g(b)=f(b)-b leq 0$.



      Can we just use the fact that because $g(x)$ is continuous, $0 in [g(b),g(a)]$, the IVT says there exists $c in [a,b]$ such that $g(c)=f(c)-c=0$ so $f(c)=c$? Then we know $c$ is a fixed point.



      How do we show that $c$ is in $(x,y)$??



      We know that $g(x)=f(x)-x=y-x neq 0$
      and $g(y)=f(y)-y=x-y neq 0$ but we don't know that those are in $(a,b)$?







      real-analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Apr 7 at 15:15









      YuiTo Cheng

      2,3694937




      2,3694937










      asked Apr 7 at 13:59









      big_math_boybig_math_boy

      303




      303




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          You've essentially stated the argument. But, rather restrict $f$ to $[x,y]$ (where w.l.o.g $x<y$). Then, define $g:[x,y]tomathbb R$ by



          $$g(t)=f(t)-t$$



          for any $tin [x,y]$. As $f$ is continuous on $[a,b]$ and $[x,y]subseteq [a,b]$, $g$ is continuous on $[x,y]$. Also, you have $g(x)=f(x)-x=y-x>0$ and $g(y)=f(y)-y=x-y<0$ as $x<y$.



          Thus, by the intermediate value theorem, there is a $sin (x,y)$ such that $g(s)=0$, i.e. $f(s)=s$.






          share|cite|improve this answer









          $endgroup$




















            7












            $begingroup$

            Without loss of generality you can assume that $x < y$. Now consider $g(t) = f(t) - t$ not on the entire interval $[a, b]$ but only on $[x, y]$.



            Then $ g(x) = y- x$ and $g(y) = x-y$ have opposite sign, so that you can apply the intermediate value theorem.



            Note also that I have chosen a different variable name ($t$ instead of $x$) for defining $g$, in order to avoid confusion between that variable and the given (fixed) value $x$.






            share|cite|improve this answer











            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178253%2fshow-a-continuous-function-with-fx-y-and-fy-x-has-a-fixed-point%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              You've essentially stated the argument. But, rather restrict $f$ to $[x,y]$ (where w.l.o.g $x<y$). Then, define $g:[x,y]tomathbb R$ by



              $$g(t)=f(t)-t$$



              for any $tin [x,y]$. As $f$ is continuous on $[a,b]$ and $[x,y]subseteq [a,b]$, $g$ is continuous on $[x,y]$. Also, you have $g(x)=f(x)-x=y-x>0$ and $g(y)=f(y)-y=x-y<0$ as $x<y$.



              Thus, by the intermediate value theorem, there is a $sin (x,y)$ such that $g(s)=0$, i.e. $f(s)=s$.






              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$

                You've essentially stated the argument. But, rather restrict $f$ to $[x,y]$ (where w.l.o.g $x<y$). Then, define $g:[x,y]tomathbb R$ by



                $$g(t)=f(t)-t$$



                for any $tin [x,y]$. As $f$ is continuous on $[a,b]$ and $[x,y]subseteq [a,b]$, $g$ is continuous on $[x,y]$. Also, you have $g(x)=f(x)-x=y-x>0$ and $g(y)=f(y)-y=x-y<0$ as $x<y$.



                Thus, by the intermediate value theorem, there is a $sin (x,y)$ such that $g(s)=0$, i.e. $f(s)=s$.






                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  You've essentially stated the argument. But, rather restrict $f$ to $[x,y]$ (where w.l.o.g $x<y$). Then, define $g:[x,y]tomathbb R$ by



                  $$g(t)=f(t)-t$$



                  for any $tin [x,y]$. As $f$ is continuous on $[a,b]$ and $[x,y]subseteq [a,b]$, $g$ is continuous on $[x,y]$. Also, you have $g(x)=f(x)-x=y-x>0$ and $g(y)=f(y)-y=x-y<0$ as $x<y$.



                  Thus, by the intermediate value theorem, there is a $sin (x,y)$ such that $g(s)=0$, i.e. $f(s)=s$.






                  share|cite|improve this answer









                  $endgroup$



                  You've essentially stated the argument. But, rather restrict $f$ to $[x,y]$ (where w.l.o.g $x<y$). Then, define $g:[x,y]tomathbb R$ by



                  $$g(t)=f(t)-t$$



                  for any $tin [x,y]$. As $f$ is continuous on $[a,b]$ and $[x,y]subseteq [a,b]$, $g$ is continuous on $[x,y]$. Also, you have $g(x)=f(x)-x=y-x>0$ and $g(y)=f(y)-y=x-y<0$ as $x<y$.



                  Thus, by the intermediate value theorem, there is a $sin (x,y)$ such that $g(s)=0$, i.e. $f(s)=s$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Apr 7 at 14:05









                  blubblub

                  3,324929




                  3,324929





















                      7












                      $begingroup$

                      Without loss of generality you can assume that $x < y$. Now consider $g(t) = f(t) - t$ not on the entire interval $[a, b]$ but only on $[x, y]$.



                      Then $ g(x) = y- x$ and $g(y) = x-y$ have opposite sign, so that you can apply the intermediate value theorem.



                      Note also that I have chosen a different variable name ($t$ instead of $x$) for defining $g$, in order to avoid confusion between that variable and the given (fixed) value $x$.






                      share|cite|improve this answer











                      $endgroup$

















                        7












                        $begingroup$

                        Without loss of generality you can assume that $x < y$. Now consider $g(t) = f(t) - t$ not on the entire interval $[a, b]$ but only on $[x, y]$.



                        Then $ g(x) = y- x$ and $g(y) = x-y$ have opposite sign, so that you can apply the intermediate value theorem.



                        Note also that I have chosen a different variable name ($t$ instead of $x$) for defining $g$, in order to avoid confusion between that variable and the given (fixed) value $x$.






                        share|cite|improve this answer











                        $endgroup$















                          7












                          7








                          7





                          $begingroup$

                          Without loss of generality you can assume that $x < y$. Now consider $g(t) = f(t) - t$ not on the entire interval $[a, b]$ but only on $[x, y]$.



                          Then $ g(x) = y- x$ and $g(y) = x-y$ have opposite sign, so that you can apply the intermediate value theorem.



                          Note also that I have chosen a different variable name ($t$ instead of $x$) for defining $g$, in order to avoid confusion between that variable and the given (fixed) value $x$.






                          share|cite|improve this answer











                          $endgroup$



                          Without loss of generality you can assume that $x < y$. Now consider $g(t) = f(t) - t$ not on the entire interval $[a, b]$ but only on $[x, y]$.



                          Then $ g(x) = y- x$ and $g(y) = x-y$ have opposite sign, so that you can apply the intermediate value theorem.



                          Note also that I have chosen a different variable name ($t$ instead of $x$) for defining $g$, in order to avoid confusion between that variable and the given (fixed) value $x$.







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Apr 7 at 14:10

























                          answered Apr 7 at 14:04









                          Martin RMartin R

                          30.8k33561




                          30.8k33561



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178253%2fshow-a-continuous-function-with-fx-y-and-fy-x-has-a-fixed-point%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              getting Checkpoint VPN SSL Network Extender working in the command lineHow to connect to CheckPoint VPN on Ubuntu 18.04LTS?Will the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayVPN SSL Network Extender in FirefoxLinux Checkpoint SNX tool configuration issuesCheck Point - Connect under Linux - snx + OTPSNX VPN Ububuntu 18.XXUsing Checkpoint VPN SSL Network Extender CLI with certificateVPN with network manager (nm-applet) is not workingWill the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayImport VPN config files to NetworkManager from command lineTrouble connecting to VPN using network-manager, while command line worksStart a VPN connection with PPTP protocol on command linestarting a docker service daemon breaks the vpn networkCan't connect to vpn with Network-managerVPN SSL Network Extender in FirefoxUsing Checkpoint VPN SSL Network Extender CLI with certificate

                              Cannot Extend partition with GParted The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Community Moderator Election ResultsCan't increase partition size with GParted?GParted doesn't recognize the unallocated space after my current partitionWhat is the best way to add unallocated space located before to Ubuntu 12.04 partition with GParted live?I can't figure out how to extend my Arch home partition into free spaceGparted Linux Mint 18.1 issueTrying to extend but swap partition is showing as Unknown in Gparted, shows proper from fdiskRearrange partitions in gparted to extend a partitionUnable to extend partition even though unallocated space is next to it using GPartedAllocate free space to root partitiongparted: how to merge unallocated space with a partition

                              Marilyn Monroe Ny fiainany manokana | Jereo koa | Meny fitetezanafanitarana azy.