Why has Russell's definition of numbers using equivalence classes been finally abandoned? ( If it has actually been abandoned). The 2019 Stack Overflow Developer Survey Results Are InWhat is the difference between a class and a set?how to express the set of natural numbers in ZFCCardinality of Vitali sets: countably or uncountably infinite?Do we always use the Axiom of Choice when picking from uncountable number of sets?Class of all finite setsWhy doesn't this definition of natural numbers hold up in axiomatic set theory?What is the domain of the successor function?Understanding impredicative definitionsProve the intersection of every nonempty family of successor sets is a successor set itselfIs it possible to define countability without referring the natural numbers?Defining uncountably infinite set

Why isn't airport relocation done gradually?

Loose spokes after only a few rides

How to save as into a customized destination on macOS?

Delete all lines which don't have n characters before delimiter

Did Section 31 appear in Star Trek: The Next Generation?

What do hard-Brexiteers want with respect to the Irish border?

A poker game description that does not feel gimmicky

"as much details as you can remember"

Is an up-to-date browser secure on an out-of-date OS?

How to answer pointed "are you quitting" questioning when I don't want them to suspect

How to deal with fear of taking dependencies

Is bread bad for ducks?

Why was M87 targetted for the Event Horizon Telescope instead of Sagittarius A*?

Did Scotland spend $250,000 for the slogan "Welcome to Scotland"?

Falsification in Math vs Science

What is the meaning of Triage in Cybersec world?

Does a dangling wire really electrocute me if I'm standing in water?

Can you compress metal and what would be the consequences?

For what reasons would an animal species NOT cross a *horizontal* land bridge?

How come people say “Would of”?

Is there a symbol for a right arrow with a square in the middle?

Right tool to dig six foot holes?

Why is the maximum length of OpenWrt’s root password 8 characters?

Resizing object distorts it (Illustrator CC 2018)



Why has Russell's definition of numbers using equivalence classes been finally abandoned? ( If it has actually been abandoned).



The 2019 Stack Overflow Developer Survey Results Are InWhat is the difference between a class and a set?how to express the set of natural numbers in ZFCCardinality of Vitali sets: countably or uncountably infinite?Do we always use the Axiom of Choice when picking from uncountable number of sets?Class of all finite setsWhy doesn't this definition of natural numbers hold up in axiomatic set theory?What is the domain of the successor function?Understanding impredicative definitionsProve the intersection of every nonempty family of successor sets is a successor set itselfIs it possible to define countability without referring the natural numbers?Defining uncountably infinite set










14












$begingroup$


I'm trying to understand the evolution of the concept of number since Frege/ Russell and to see the "big picture".



What are the main motivations explaining the change from Russell's definition using equivalence classes ( in "Introduction to mathematical philosophy") and the current definition of (natural numbers) using the successor function?




The "stages" I can see are the following. Would you please assess the reasons I have imagined to explain (to myself) the passage from one stage to another?



(1) Frege / Russell recognized that numbers were higher-order properties, not properties of things , but of sets



(2) Numbers are defined as equivalence classes, using the relation of "the set X is equinumerous to set Y" (iff there exist at least one bijection from X to Y)



(3) To identify each number (that is each class) we would need a "standard" in each class. For example, one could use Thumb, Index, Middle finger, Ring finger, Pinky finger as a representative of the numbers having 5 elements. In that case, one would say:




the number 5 is the set of all X such that there exists a bijection from X to the set Thumb, Index, Middle finger, Ring finger, Pinky finger




and




X has 5 as cardinal number iff X belongs to the set 5




(4) But the use of these representatives requires us to admit the existence of the elements of these standards. Furthermore, it obliges us to admit that the existence of numbers depends on contingent facts of the world, that is, the existence of these elements belonging to our " standards".



(5) So to get rid of these existential presupposions, we decide to chose as standards sets whose elements exist "at minimal cost". As standard for the set "zero", we use (as we did before. But as standard for the set 1, we now use



0 (that certainly exists if 0 = exists.



and as standard for the set 2, we use 0, 1 , etc. In this way, our construction becomes independent of the existence of concrete things in the world.



(6) We finally abandon the definition of numbers as equivalence classes (with a special element as standard) and define directly each number by its "standard". So instead of saying that "2 is the set of sets that can be put in $1-1$ correspondance with the standard $ 0,1$", we simply say that



the number $2$ is (by definition) the set $ 0,1$.



(7) We finally put this set in order using the successor function ( $S($number $x)$ is by definition the union of number $x$ and of $x$) which "generates" an infinite series of numbers "out of" the null set.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    That's a decent philosophical reasoning - although I can't speak to its historical accuracy, not being versed in the history myself - but never underestimate the role of sheer pragmatics: proper classes are weird and talking about sets of cardinal (or ordinal) numbers is important, so it is useful for the "number of elements" (and similar notions) of a set to also be a set rather than a class. It just ultimately reduces the "overhead cost" for the arguments we want to make. Again, I'm not versed in the history (hence this isn't an answer), but I suspect this did play a major role in the shift.
    $endgroup$
    – Noah Schweber
    Apr 7 at 14:26







  • 2




    $begingroup$
    I think this approach, as Noah points out, fell out of favor when it became very obvious that unrestricted comprehensions are problematic, and classes are in general annoying to work with. So, it's a lot easier simply denoting a set to represent a given cardinality, and forcing any set with the same cardinality to share a bijection, rather than being a member of some class, that we don't even know much about.
    $endgroup$
    – Don Thousand
    Apr 7 at 14:29






  • 1




    $begingroup$
    (6) "sounds" a little bit different IMO... The original proposal of Frege and Russell was also to solve the philosophical problem of "what numbers really are" (assuming that the question is meaningful...). The current set theory construction aims at defining inside the "universe" of sets a structure that has exactly all the properties of the natural number. From a mathematical point of view this is enough, but form the point of view of Frege and Russell it is quite doubtful to asserts that numbers are conjured out of the empty set.
    $endgroup$
    – Mauro ALLEGRANZA
    Apr 7 at 18:38







  • 2




    $begingroup$
    See Paul Benacerraf, What numbers could not be.
    $endgroup$
    – Mauro ALLEGRANZA
    Apr 7 at 18:44















14












$begingroup$


I'm trying to understand the evolution of the concept of number since Frege/ Russell and to see the "big picture".



What are the main motivations explaining the change from Russell's definition using equivalence classes ( in "Introduction to mathematical philosophy") and the current definition of (natural numbers) using the successor function?




The "stages" I can see are the following. Would you please assess the reasons I have imagined to explain (to myself) the passage from one stage to another?



(1) Frege / Russell recognized that numbers were higher-order properties, not properties of things , but of sets



(2) Numbers are defined as equivalence classes, using the relation of "the set X is equinumerous to set Y" (iff there exist at least one bijection from X to Y)



(3) To identify each number (that is each class) we would need a "standard" in each class. For example, one could use Thumb, Index, Middle finger, Ring finger, Pinky finger as a representative of the numbers having 5 elements. In that case, one would say:




the number 5 is the set of all X such that there exists a bijection from X to the set Thumb, Index, Middle finger, Ring finger, Pinky finger




and




X has 5 as cardinal number iff X belongs to the set 5




(4) But the use of these representatives requires us to admit the existence of the elements of these standards. Furthermore, it obliges us to admit that the existence of numbers depends on contingent facts of the world, that is, the existence of these elements belonging to our " standards".



(5) So to get rid of these existential presupposions, we decide to chose as standards sets whose elements exist "at minimal cost". As standard for the set "zero", we use (as we did before. But as standard for the set 1, we now use



0 (that certainly exists if 0 = exists.



and as standard for the set 2, we use 0, 1 , etc. In this way, our construction becomes independent of the existence of concrete things in the world.



(6) We finally abandon the definition of numbers as equivalence classes (with a special element as standard) and define directly each number by its "standard". So instead of saying that "2 is the set of sets that can be put in $1-1$ correspondance with the standard $ 0,1$", we simply say that



the number $2$ is (by definition) the set $ 0,1$.



(7) We finally put this set in order using the successor function ( $S($number $x)$ is by definition the union of number $x$ and of $x$) which "generates" an infinite series of numbers "out of" the null set.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    That's a decent philosophical reasoning - although I can't speak to its historical accuracy, not being versed in the history myself - but never underestimate the role of sheer pragmatics: proper classes are weird and talking about sets of cardinal (or ordinal) numbers is important, so it is useful for the "number of elements" (and similar notions) of a set to also be a set rather than a class. It just ultimately reduces the "overhead cost" for the arguments we want to make. Again, I'm not versed in the history (hence this isn't an answer), but I suspect this did play a major role in the shift.
    $endgroup$
    – Noah Schweber
    Apr 7 at 14:26







  • 2




    $begingroup$
    I think this approach, as Noah points out, fell out of favor when it became very obvious that unrestricted comprehensions are problematic, and classes are in general annoying to work with. So, it's a lot easier simply denoting a set to represent a given cardinality, and forcing any set with the same cardinality to share a bijection, rather than being a member of some class, that we don't even know much about.
    $endgroup$
    – Don Thousand
    Apr 7 at 14:29






  • 1




    $begingroup$
    (6) "sounds" a little bit different IMO... The original proposal of Frege and Russell was also to solve the philosophical problem of "what numbers really are" (assuming that the question is meaningful...). The current set theory construction aims at defining inside the "universe" of sets a structure that has exactly all the properties of the natural number. From a mathematical point of view this is enough, but form the point of view of Frege and Russell it is quite doubtful to asserts that numbers are conjured out of the empty set.
    $endgroup$
    – Mauro ALLEGRANZA
    Apr 7 at 18:38







  • 2




    $begingroup$
    See Paul Benacerraf, What numbers could not be.
    $endgroup$
    – Mauro ALLEGRANZA
    Apr 7 at 18:44













14












14








14


2



$begingroup$


I'm trying to understand the evolution of the concept of number since Frege/ Russell and to see the "big picture".



What are the main motivations explaining the change from Russell's definition using equivalence classes ( in "Introduction to mathematical philosophy") and the current definition of (natural numbers) using the successor function?




The "stages" I can see are the following. Would you please assess the reasons I have imagined to explain (to myself) the passage from one stage to another?



(1) Frege / Russell recognized that numbers were higher-order properties, not properties of things , but of sets



(2) Numbers are defined as equivalence classes, using the relation of "the set X is equinumerous to set Y" (iff there exist at least one bijection from X to Y)



(3) To identify each number (that is each class) we would need a "standard" in each class. For example, one could use Thumb, Index, Middle finger, Ring finger, Pinky finger as a representative of the numbers having 5 elements. In that case, one would say:




the number 5 is the set of all X such that there exists a bijection from X to the set Thumb, Index, Middle finger, Ring finger, Pinky finger




and




X has 5 as cardinal number iff X belongs to the set 5




(4) But the use of these representatives requires us to admit the existence of the elements of these standards. Furthermore, it obliges us to admit that the existence of numbers depends on contingent facts of the world, that is, the existence of these elements belonging to our " standards".



(5) So to get rid of these existential presupposions, we decide to chose as standards sets whose elements exist "at minimal cost". As standard for the set "zero", we use (as we did before. But as standard for the set 1, we now use



0 (that certainly exists if 0 = exists.



and as standard for the set 2, we use 0, 1 , etc. In this way, our construction becomes independent of the existence of concrete things in the world.



(6) We finally abandon the definition of numbers as equivalence classes (with a special element as standard) and define directly each number by its "standard". So instead of saying that "2 is the set of sets that can be put in $1-1$ correspondance with the standard $ 0,1$", we simply say that



the number $2$ is (by definition) the set $ 0,1$.



(7) We finally put this set in order using the successor function ( $S($number $x)$ is by definition the union of number $x$ and of $x$) which "generates" an infinite series of numbers "out of" the null set.










share|cite|improve this question











$endgroup$




I'm trying to understand the evolution of the concept of number since Frege/ Russell and to see the "big picture".



What are the main motivations explaining the change from Russell's definition using equivalence classes ( in "Introduction to mathematical philosophy") and the current definition of (natural numbers) using the successor function?




The "stages" I can see are the following. Would you please assess the reasons I have imagined to explain (to myself) the passage from one stage to another?



(1) Frege / Russell recognized that numbers were higher-order properties, not properties of things , but of sets



(2) Numbers are defined as equivalence classes, using the relation of "the set X is equinumerous to set Y" (iff there exist at least one bijection from X to Y)



(3) To identify each number (that is each class) we would need a "standard" in each class. For example, one could use Thumb, Index, Middle finger, Ring finger, Pinky finger as a representative of the numbers having 5 elements. In that case, one would say:




the number 5 is the set of all X such that there exists a bijection from X to the set Thumb, Index, Middle finger, Ring finger, Pinky finger




and




X has 5 as cardinal number iff X belongs to the set 5




(4) But the use of these representatives requires us to admit the existence of the elements of these standards. Furthermore, it obliges us to admit that the existence of numbers depends on contingent facts of the world, that is, the existence of these elements belonging to our " standards".



(5) So to get rid of these existential presupposions, we decide to chose as standards sets whose elements exist "at minimal cost". As standard for the set "zero", we use (as we did before. But as standard for the set 1, we now use



0 (that certainly exists if 0 = exists.



and as standard for the set 2, we use 0, 1 , etc. In this way, our construction becomes independent of the existence of concrete things in the world.



(6) We finally abandon the definition of numbers as equivalence classes (with a special element as standard) and define directly each number by its "standard". So instead of saying that "2 is the set of sets that can be put in $1-1$ correspondance with the standard $ 0,1$", we simply say that



the number $2$ is (by definition) the set $ 0,1$.



(7) We finally put this set in order using the successor function ( $S($number $x)$ is by definition the union of number $x$ and of $x$) which "generates" an infinite series of numbers "out of" the null set.







elementary-set-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 7 at 19:30









Nij

2,01611323




2,01611323










asked Apr 7 at 14:20









Eleonore Saint JamesEleonore Saint James

1119




1119







  • 2




    $begingroup$
    That's a decent philosophical reasoning - although I can't speak to its historical accuracy, not being versed in the history myself - but never underestimate the role of sheer pragmatics: proper classes are weird and talking about sets of cardinal (or ordinal) numbers is important, so it is useful for the "number of elements" (and similar notions) of a set to also be a set rather than a class. It just ultimately reduces the "overhead cost" for the arguments we want to make. Again, I'm not versed in the history (hence this isn't an answer), but I suspect this did play a major role in the shift.
    $endgroup$
    – Noah Schweber
    Apr 7 at 14:26







  • 2




    $begingroup$
    I think this approach, as Noah points out, fell out of favor when it became very obvious that unrestricted comprehensions are problematic, and classes are in general annoying to work with. So, it's a lot easier simply denoting a set to represent a given cardinality, and forcing any set with the same cardinality to share a bijection, rather than being a member of some class, that we don't even know much about.
    $endgroup$
    – Don Thousand
    Apr 7 at 14:29






  • 1




    $begingroup$
    (6) "sounds" a little bit different IMO... The original proposal of Frege and Russell was also to solve the philosophical problem of "what numbers really are" (assuming that the question is meaningful...). The current set theory construction aims at defining inside the "universe" of sets a structure that has exactly all the properties of the natural number. From a mathematical point of view this is enough, but form the point of view of Frege and Russell it is quite doubtful to asserts that numbers are conjured out of the empty set.
    $endgroup$
    – Mauro ALLEGRANZA
    Apr 7 at 18:38







  • 2




    $begingroup$
    See Paul Benacerraf, What numbers could not be.
    $endgroup$
    – Mauro ALLEGRANZA
    Apr 7 at 18:44












  • 2




    $begingroup$
    That's a decent philosophical reasoning - although I can't speak to its historical accuracy, not being versed in the history myself - but never underestimate the role of sheer pragmatics: proper classes are weird and talking about sets of cardinal (or ordinal) numbers is important, so it is useful for the "number of elements" (and similar notions) of a set to also be a set rather than a class. It just ultimately reduces the "overhead cost" for the arguments we want to make. Again, I'm not versed in the history (hence this isn't an answer), but I suspect this did play a major role in the shift.
    $endgroup$
    – Noah Schweber
    Apr 7 at 14:26







  • 2




    $begingroup$
    I think this approach, as Noah points out, fell out of favor when it became very obvious that unrestricted comprehensions are problematic, and classes are in general annoying to work with. So, it's a lot easier simply denoting a set to represent a given cardinality, and forcing any set with the same cardinality to share a bijection, rather than being a member of some class, that we don't even know much about.
    $endgroup$
    – Don Thousand
    Apr 7 at 14:29






  • 1




    $begingroup$
    (6) "sounds" a little bit different IMO... The original proposal of Frege and Russell was also to solve the philosophical problem of "what numbers really are" (assuming that the question is meaningful...). The current set theory construction aims at defining inside the "universe" of sets a structure that has exactly all the properties of the natural number. From a mathematical point of view this is enough, but form the point of view of Frege and Russell it is quite doubtful to asserts that numbers are conjured out of the empty set.
    $endgroup$
    – Mauro ALLEGRANZA
    Apr 7 at 18:38







  • 2




    $begingroup$
    See Paul Benacerraf, What numbers could not be.
    $endgroup$
    – Mauro ALLEGRANZA
    Apr 7 at 18:44







2




2




$begingroup$
That's a decent philosophical reasoning - although I can't speak to its historical accuracy, not being versed in the history myself - but never underestimate the role of sheer pragmatics: proper classes are weird and talking about sets of cardinal (or ordinal) numbers is important, so it is useful for the "number of elements" (and similar notions) of a set to also be a set rather than a class. It just ultimately reduces the "overhead cost" for the arguments we want to make. Again, I'm not versed in the history (hence this isn't an answer), but I suspect this did play a major role in the shift.
$endgroup$
– Noah Schweber
Apr 7 at 14:26





$begingroup$
That's a decent philosophical reasoning - although I can't speak to its historical accuracy, not being versed in the history myself - but never underestimate the role of sheer pragmatics: proper classes are weird and talking about sets of cardinal (or ordinal) numbers is important, so it is useful for the "number of elements" (and similar notions) of a set to also be a set rather than a class. It just ultimately reduces the "overhead cost" for the arguments we want to make. Again, I'm not versed in the history (hence this isn't an answer), but I suspect this did play a major role in the shift.
$endgroup$
– Noah Schweber
Apr 7 at 14:26





2




2




$begingroup$
I think this approach, as Noah points out, fell out of favor when it became very obvious that unrestricted comprehensions are problematic, and classes are in general annoying to work with. So, it's a lot easier simply denoting a set to represent a given cardinality, and forcing any set with the same cardinality to share a bijection, rather than being a member of some class, that we don't even know much about.
$endgroup$
– Don Thousand
Apr 7 at 14:29




$begingroup$
I think this approach, as Noah points out, fell out of favor when it became very obvious that unrestricted comprehensions are problematic, and classes are in general annoying to work with. So, it's a lot easier simply denoting a set to represent a given cardinality, and forcing any set with the same cardinality to share a bijection, rather than being a member of some class, that we don't even know much about.
$endgroup$
– Don Thousand
Apr 7 at 14:29




1




1




$begingroup$
(6) "sounds" a little bit different IMO... The original proposal of Frege and Russell was also to solve the philosophical problem of "what numbers really are" (assuming that the question is meaningful...). The current set theory construction aims at defining inside the "universe" of sets a structure that has exactly all the properties of the natural number. From a mathematical point of view this is enough, but form the point of view of Frege and Russell it is quite doubtful to asserts that numbers are conjured out of the empty set.
$endgroup$
– Mauro ALLEGRANZA
Apr 7 at 18:38





$begingroup$
(6) "sounds" a little bit different IMO... The original proposal of Frege and Russell was also to solve the philosophical problem of "what numbers really are" (assuming that the question is meaningful...). The current set theory construction aims at defining inside the "universe" of sets a structure that has exactly all the properties of the natural number. From a mathematical point of view this is enough, but form the point of view of Frege and Russell it is quite doubtful to asserts that numbers are conjured out of the empty set.
$endgroup$
– Mauro ALLEGRANZA
Apr 7 at 18:38





2




2




$begingroup$
See Paul Benacerraf, What numbers could not be.
$endgroup$
– Mauro ALLEGRANZA
Apr 7 at 18:44




$begingroup$
See Paul Benacerraf, What numbers could not be.
$endgroup$
– Mauro ALLEGRANZA
Apr 7 at 18:44










3 Answers
3






active

oldest

votes


















12












$begingroup$

The question might be a better fit for HSM.se but, until it's there, my answer won't focus on historical details so much as mathematical motives.




(1) numbers were higher-order properties, not of things , but of sets




Numbers are lots of things. Is the example above worth taking as a definition, axiom or theorem? You can try each approach, but we try to leave as much complicated machinery as possible to the later theorem-proving stage.




(2) Numbers are defined as equivalence classes




Which, after $0$, are "proper classes". I won't be terribly specific about that, because the details vary by your choice of set theory. But since we can't have a set of all sets that aren't elements of themselves, we have to say some collections of sets you can imagine aren't sets, and we typically say, ironically enough given the original motive for set theory, that sets are distinguished from proper classes in that they can be elements of classes.



Eventually, we want to define integers as equivalence classes of ordered pairs of integers with the same difference between coordinates, e.g. $-3$ is the set of $(n+3,,n)$ for non-negative integers $n$. But $(a,,b):=a,,a,,b$ requires $a,,b$ to be elements of things, i.e. sets, so they can't be the enormous equivalence classes proposed in (2).




(3) To identify each number class we would need a "standard" in each class.
(4) But the use requires us to admit the existence of the elements of these standards.
(5) We choose as standards sets whose elements exist "at minimal cost".
(6) We finally abandon the definition of numbers as equivalence classes (with a special element as standard) and define directly each number by its "standard".




A few points:



  • If you think about it, (3) immediately allows us to jump to (6) and thereby obviate (2), regardless of whether you make the observations in (4), (5).

  • Defining $0:=,,Sn:=ncupn$ and putting these into a thing called $omega$ with no further elements, and claiming $omega$ is a set, is something we already do in just about every interesting set theory's axiom of infinity (although I imagine some prefer a slightly different formulation). We don't do that because we're trying to solve the problem Russell was thinking about; we do it because a lot of interesting mathematics requires infinities. And that one axiom lets us skip all of (1)-(5) and never do any "philosophy" at all.


(7) We finally put this set in order using the successor function




Oh dear, I seem to have gotten ahead of myself. ;)



Finally, let's note that none of this lets us decide what the equivalent to (1)-(7) would be for infinite sets' sizes. What is the representative set equinumerous to $Bbb N$, for example, or to $Bbb C$? Roughly speaking, it would go like this:



  • (1)/(2) would proceed as before;

  • For (3)-(6)'s choice of cardinals, see here. Long story short, the details vary by the set theory used (and to an extent the model thereof), but that link gives the gist of it;

  • (7)'s a bit trickier, and in some set theories you can't even order all the set sizes!





share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    @ J. G - Thanks for this clear and detailed answer.
    $endgroup$
    – Eleonore Saint James
    Apr 7 at 15:06


















6












$begingroup$

The main (unique?) motivation has zero relation with your (4). The definition of numbers as equivalence classes has a very big technical problem: the equivalence classes themselves are "too big", namely, proper classes.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    I don't know why this got downvoted. It cuts to the heart of the question.
    $endgroup$
    – TonyK
    Apr 7 at 14:56










  • $begingroup$
    @ TonyK @ Martin Bias - What was downvoted? Personnaly, I upvote your both answers.
    $endgroup$
    – Eleonore Saint James
    Apr 7 at 15:00










  • $begingroup$
    @EleonoreSaintJames, my answer as two upvotes (you, TonyK) and a downvote. The other upvote of TonyK is also mine.
    $endgroup$
    – Martín-Blas Pérez Pinilla
    Apr 7 at 15:02











  • $begingroup$
    @EleonoreSaintJames: Once you reach a certain reputation, you can click on the vote counter to see the number of upvotes and downvotes. This answer currently has two upvotes (from you and me!) and one downvote.
    $endgroup$
    – TonyK
    Apr 7 at 15:03


















5












$begingroup$

The problem is not that the original definition requires the existence of the elements of the standards (Thumb, Index etc.) If we have a reasonable Set Theory, we can always find a set with five elements.



The problem is that the equivalence class so defined is a proper Class, not a Set; and the aim is to construct as much mathematics as possible using Sets only, as constructed using the Axioms that we allow ourselves.



So we define $5$ iteratively as
$$0=emptyset$$
$$1=0$$
$$2=0,1$$
$$3=0,1,2$$
$$4=0,1,2,3$$
$$5=0,1,2,3,4$$



which are all well-defined Sets.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178282%2fwhy-has-russells-definition-of-numbers-using-equivalence-classes-been-finally-a%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    12












    $begingroup$

    The question might be a better fit for HSM.se but, until it's there, my answer won't focus on historical details so much as mathematical motives.




    (1) numbers were higher-order properties, not of things , but of sets




    Numbers are lots of things. Is the example above worth taking as a definition, axiom or theorem? You can try each approach, but we try to leave as much complicated machinery as possible to the later theorem-proving stage.




    (2) Numbers are defined as equivalence classes




    Which, after $0$, are "proper classes". I won't be terribly specific about that, because the details vary by your choice of set theory. But since we can't have a set of all sets that aren't elements of themselves, we have to say some collections of sets you can imagine aren't sets, and we typically say, ironically enough given the original motive for set theory, that sets are distinguished from proper classes in that they can be elements of classes.



    Eventually, we want to define integers as equivalence classes of ordered pairs of integers with the same difference between coordinates, e.g. $-3$ is the set of $(n+3,,n)$ for non-negative integers $n$. But $(a,,b):=a,,a,,b$ requires $a,,b$ to be elements of things, i.e. sets, so they can't be the enormous equivalence classes proposed in (2).




    (3) To identify each number class we would need a "standard" in each class.
    (4) But the use requires us to admit the existence of the elements of these standards.
    (5) We choose as standards sets whose elements exist "at minimal cost".
    (6) We finally abandon the definition of numbers as equivalence classes (with a special element as standard) and define directly each number by its "standard".




    A few points:



    • If you think about it, (3) immediately allows us to jump to (6) and thereby obviate (2), regardless of whether you make the observations in (4), (5).

    • Defining $0:=,,Sn:=ncupn$ and putting these into a thing called $omega$ with no further elements, and claiming $omega$ is a set, is something we already do in just about every interesting set theory's axiom of infinity (although I imagine some prefer a slightly different formulation). We don't do that because we're trying to solve the problem Russell was thinking about; we do it because a lot of interesting mathematics requires infinities. And that one axiom lets us skip all of (1)-(5) and never do any "philosophy" at all.


    (7) We finally put this set in order using the successor function




    Oh dear, I seem to have gotten ahead of myself. ;)



    Finally, let's note that none of this lets us decide what the equivalent to (1)-(7) would be for infinite sets' sizes. What is the representative set equinumerous to $Bbb N$, for example, or to $Bbb C$? Roughly speaking, it would go like this:



    • (1)/(2) would proceed as before;

    • For (3)-(6)'s choice of cardinals, see here. Long story short, the details vary by the set theory used (and to an extent the model thereof), but that link gives the gist of it;

    • (7)'s a bit trickier, and in some set theories you can't even order all the set sizes!





    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      @ J. G - Thanks for this clear and detailed answer.
      $endgroup$
      – Eleonore Saint James
      Apr 7 at 15:06















    12












    $begingroup$

    The question might be a better fit for HSM.se but, until it's there, my answer won't focus on historical details so much as mathematical motives.




    (1) numbers were higher-order properties, not of things , but of sets




    Numbers are lots of things. Is the example above worth taking as a definition, axiom or theorem? You can try each approach, but we try to leave as much complicated machinery as possible to the later theorem-proving stage.




    (2) Numbers are defined as equivalence classes




    Which, after $0$, are "proper classes". I won't be terribly specific about that, because the details vary by your choice of set theory. But since we can't have a set of all sets that aren't elements of themselves, we have to say some collections of sets you can imagine aren't sets, and we typically say, ironically enough given the original motive for set theory, that sets are distinguished from proper classes in that they can be elements of classes.



    Eventually, we want to define integers as equivalence classes of ordered pairs of integers with the same difference between coordinates, e.g. $-3$ is the set of $(n+3,,n)$ for non-negative integers $n$. But $(a,,b):=a,,a,,b$ requires $a,,b$ to be elements of things, i.e. sets, so they can't be the enormous equivalence classes proposed in (2).




    (3) To identify each number class we would need a "standard" in each class.
    (4) But the use requires us to admit the existence of the elements of these standards.
    (5) We choose as standards sets whose elements exist "at minimal cost".
    (6) We finally abandon the definition of numbers as equivalence classes (with a special element as standard) and define directly each number by its "standard".




    A few points:



    • If you think about it, (3) immediately allows us to jump to (6) and thereby obviate (2), regardless of whether you make the observations in (4), (5).

    • Defining $0:=,,Sn:=ncupn$ and putting these into a thing called $omega$ with no further elements, and claiming $omega$ is a set, is something we already do in just about every interesting set theory's axiom of infinity (although I imagine some prefer a slightly different formulation). We don't do that because we're trying to solve the problem Russell was thinking about; we do it because a lot of interesting mathematics requires infinities. And that one axiom lets us skip all of (1)-(5) and never do any "philosophy" at all.


    (7) We finally put this set in order using the successor function




    Oh dear, I seem to have gotten ahead of myself. ;)



    Finally, let's note that none of this lets us decide what the equivalent to (1)-(7) would be for infinite sets' sizes. What is the representative set equinumerous to $Bbb N$, for example, or to $Bbb C$? Roughly speaking, it would go like this:



    • (1)/(2) would proceed as before;

    • For (3)-(6)'s choice of cardinals, see here. Long story short, the details vary by the set theory used (and to an extent the model thereof), but that link gives the gist of it;

    • (7)'s a bit trickier, and in some set theories you can't even order all the set sizes!





    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      @ J. G - Thanks for this clear and detailed answer.
      $endgroup$
      – Eleonore Saint James
      Apr 7 at 15:06













    12












    12








    12





    $begingroup$

    The question might be a better fit for HSM.se but, until it's there, my answer won't focus on historical details so much as mathematical motives.




    (1) numbers were higher-order properties, not of things , but of sets




    Numbers are lots of things. Is the example above worth taking as a definition, axiom or theorem? You can try each approach, but we try to leave as much complicated machinery as possible to the later theorem-proving stage.




    (2) Numbers are defined as equivalence classes




    Which, after $0$, are "proper classes". I won't be terribly specific about that, because the details vary by your choice of set theory. But since we can't have a set of all sets that aren't elements of themselves, we have to say some collections of sets you can imagine aren't sets, and we typically say, ironically enough given the original motive for set theory, that sets are distinguished from proper classes in that they can be elements of classes.



    Eventually, we want to define integers as equivalence classes of ordered pairs of integers with the same difference between coordinates, e.g. $-3$ is the set of $(n+3,,n)$ for non-negative integers $n$. But $(a,,b):=a,,a,,b$ requires $a,,b$ to be elements of things, i.e. sets, so they can't be the enormous equivalence classes proposed in (2).




    (3) To identify each number class we would need a "standard" in each class.
    (4) But the use requires us to admit the existence of the elements of these standards.
    (5) We choose as standards sets whose elements exist "at minimal cost".
    (6) We finally abandon the definition of numbers as equivalence classes (with a special element as standard) and define directly each number by its "standard".




    A few points:



    • If you think about it, (3) immediately allows us to jump to (6) and thereby obviate (2), regardless of whether you make the observations in (4), (5).

    • Defining $0:=,,Sn:=ncupn$ and putting these into a thing called $omega$ with no further elements, and claiming $omega$ is a set, is something we already do in just about every interesting set theory's axiom of infinity (although I imagine some prefer a slightly different formulation). We don't do that because we're trying to solve the problem Russell was thinking about; we do it because a lot of interesting mathematics requires infinities. And that one axiom lets us skip all of (1)-(5) and never do any "philosophy" at all.


    (7) We finally put this set in order using the successor function




    Oh dear, I seem to have gotten ahead of myself. ;)



    Finally, let's note that none of this lets us decide what the equivalent to (1)-(7) would be for infinite sets' sizes. What is the representative set equinumerous to $Bbb N$, for example, or to $Bbb C$? Roughly speaking, it would go like this:



    • (1)/(2) would proceed as before;

    • For (3)-(6)'s choice of cardinals, see here. Long story short, the details vary by the set theory used (and to an extent the model thereof), but that link gives the gist of it;

    • (7)'s a bit trickier, and in some set theories you can't even order all the set sizes!





    share|cite|improve this answer









    $endgroup$



    The question might be a better fit for HSM.se but, until it's there, my answer won't focus on historical details so much as mathematical motives.




    (1) numbers were higher-order properties, not of things , but of sets




    Numbers are lots of things. Is the example above worth taking as a definition, axiom or theorem? You can try each approach, but we try to leave as much complicated machinery as possible to the later theorem-proving stage.




    (2) Numbers are defined as equivalence classes




    Which, after $0$, are "proper classes". I won't be terribly specific about that, because the details vary by your choice of set theory. But since we can't have a set of all sets that aren't elements of themselves, we have to say some collections of sets you can imagine aren't sets, and we typically say, ironically enough given the original motive for set theory, that sets are distinguished from proper classes in that they can be elements of classes.



    Eventually, we want to define integers as equivalence classes of ordered pairs of integers with the same difference between coordinates, e.g. $-3$ is the set of $(n+3,,n)$ for non-negative integers $n$. But $(a,,b):=a,,a,,b$ requires $a,,b$ to be elements of things, i.e. sets, so they can't be the enormous equivalence classes proposed in (2).




    (3) To identify each number class we would need a "standard" in each class.
    (4) But the use requires us to admit the existence of the elements of these standards.
    (5) We choose as standards sets whose elements exist "at minimal cost".
    (6) We finally abandon the definition of numbers as equivalence classes (with a special element as standard) and define directly each number by its "standard".




    A few points:



    • If you think about it, (3) immediately allows us to jump to (6) and thereby obviate (2), regardless of whether you make the observations in (4), (5).

    • Defining $0:=,,Sn:=ncupn$ and putting these into a thing called $omega$ with no further elements, and claiming $omega$ is a set, is something we already do in just about every interesting set theory's axiom of infinity (although I imagine some prefer a slightly different formulation). We don't do that because we're trying to solve the problem Russell was thinking about; we do it because a lot of interesting mathematics requires infinities. And that one axiom lets us skip all of (1)-(5) and never do any "philosophy" at all.


    (7) We finally put this set in order using the successor function




    Oh dear, I seem to have gotten ahead of myself. ;)



    Finally, let's note that none of this lets us decide what the equivalent to (1)-(7) would be for infinite sets' sizes. What is the representative set equinumerous to $Bbb N$, for example, or to $Bbb C$? Roughly speaking, it would go like this:



    • (1)/(2) would proceed as before;

    • For (3)-(6)'s choice of cardinals, see here. Long story short, the details vary by the set theory used (and to an extent the model thereof), but that link gives the gist of it;

    • (7)'s a bit trickier, and in some set theories you can't even order all the set sizes!






    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Apr 7 at 15:00









    J.G.J.G.

    33.2k23252




    33.2k23252







    • 1




      $begingroup$
      @ J. G - Thanks for this clear and detailed answer.
      $endgroup$
      – Eleonore Saint James
      Apr 7 at 15:06












    • 1




      $begingroup$
      @ J. G - Thanks for this clear and detailed answer.
      $endgroup$
      – Eleonore Saint James
      Apr 7 at 15:06







    1




    1




    $begingroup$
    @ J. G - Thanks for this clear and detailed answer.
    $endgroup$
    – Eleonore Saint James
    Apr 7 at 15:06




    $begingroup$
    @ J. G - Thanks for this clear and detailed answer.
    $endgroup$
    – Eleonore Saint James
    Apr 7 at 15:06











    6












    $begingroup$

    The main (unique?) motivation has zero relation with your (4). The definition of numbers as equivalence classes has a very big technical problem: the equivalence classes themselves are "too big", namely, proper classes.






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      I don't know why this got downvoted. It cuts to the heart of the question.
      $endgroup$
      – TonyK
      Apr 7 at 14:56










    • $begingroup$
      @ TonyK @ Martin Bias - What was downvoted? Personnaly, I upvote your both answers.
      $endgroup$
      – Eleonore Saint James
      Apr 7 at 15:00










    • $begingroup$
      @EleonoreSaintJames, my answer as two upvotes (you, TonyK) and a downvote. The other upvote of TonyK is also mine.
      $endgroup$
      – Martín-Blas Pérez Pinilla
      Apr 7 at 15:02











    • $begingroup$
      @EleonoreSaintJames: Once you reach a certain reputation, you can click on the vote counter to see the number of upvotes and downvotes. This answer currently has two upvotes (from you and me!) and one downvote.
      $endgroup$
      – TonyK
      Apr 7 at 15:03















    6












    $begingroup$

    The main (unique?) motivation has zero relation with your (4). The definition of numbers as equivalence classes has a very big technical problem: the equivalence classes themselves are "too big", namely, proper classes.






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      I don't know why this got downvoted. It cuts to the heart of the question.
      $endgroup$
      – TonyK
      Apr 7 at 14:56










    • $begingroup$
      @ TonyK @ Martin Bias - What was downvoted? Personnaly, I upvote your both answers.
      $endgroup$
      – Eleonore Saint James
      Apr 7 at 15:00










    • $begingroup$
      @EleonoreSaintJames, my answer as two upvotes (you, TonyK) and a downvote. The other upvote of TonyK is also mine.
      $endgroup$
      – Martín-Blas Pérez Pinilla
      Apr 7 at 15:02











    • $begingroup$
      @EleonoreSaintJames: Once you reach a certain reputation, you can click on the vote counter to see the number of upvotes and downvotes. This answer currently has two upvotes (from you and me!) and one downvote.
      $endgroup$
      – TonyK
      Apr 7 at 15:03













    6












    6








    6





    $begingroup$

    The main (unique?) motivation has zero relation with your (4). The definition of numbers as equivalence classes has a very big technical problem: the equivalence classes themselves are "too big", namely, proper classes.






    share|cite|improve this answer









    $endgroup$



    The main (unique?) motivation has zero relation with your (4). The definition of numbers as equivalence classes has a very big technical problem: the equivalence classes themselves are "too big", namely, proper classes.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Apr 7 at 14:49









    Martín-Blas Pérez PinillaMartín-Blas Pérez Pinilla

    35.5k42972




    35.5k42972







    • 1




      $begingroup$
      I don't know why this got downvoted. It cuts to the heart of the question.
      $endgroup$
      – TonyK
      Apr 7 at 14:56










    • $begingroup$
      @ TonyK @ Martin Bias - What was downvoted? Personnaly, I upvote your both answers.
      $endgroup$
      – Eleonore Saint James
      Apr 7 at 15:00










    • $begingroup$
      @EleonoreSaintJames, my answer as two upvotes (you, TonyK) and a downvote. The other upvote of TonyK is also mine.
      $endgroup$
      – Martín-Blas Pérez Pinilla
      Apr 7 at 15:02











    • $begingroup$
      @EleonoreSaintJames: Once you reach a certain reputation, you can click on the vote counter to see the number of upvotes and downvotes. This answer currently has two upvotes (from you and me!) and one downvote.
      $endgroup$
      – TonyK
      Apr 7 at 15:03












    • 1




      $begingroup$
      I don't know why this got downvoted. It cuts to the heart of the question.
      $endgroup$
      – TonyK
      Apr 7 at 14:56










    • $begingroup$
      @ TonyK @ Martin Bias - What was downvoted? Personnaly, I upvote your both answers.
      $endgroup$
      – Eleonore Saint James
      Apr 7 at 15:00










    • $begingroup$
      @EleonoreSaintJames, my answer as two upvotes (you, TonyK) and a downvote. The other upvote of TonyK is also mine.
      $endgroup$
      – Martín-Blas Pérez Pinilla
      Apr 7 at 15:02











    • $begingroup$
      @EleonoreSaintJames: Once you reach a certain reputation, you can click on the vote counter to see the number of upvotes and downvotes. This answer currently has two upvotes (from you and me!) and one downvote.
      $endgroup$
      – TonyK
      Apr 7 at 15:03







    1




    1




    $begingroup$
    I don't know why this got downvoted. It cuts to the heart of the question.
    $endgroup$
    – TonyK
    Apr 7 at 14:56




    $begingroup$
    I don't know why this got downvoted. It cuts to the heart of the question.
    $endgroup$
    – TonyK
    Apr 7 at 14:56












    $begingroup$
    @ TonyK @ Martin Bias - What was downvoted? Personnaly, I upvote your both answers.
    $endgroup$
    – Eleonore Saint James
    Apr 7 at 15:00




    $begingroup$
    @ TonyK @ Martin Bias - What was downvoted? Personnaly, I upvote your both answers.
    $endgroup$
    – Eleonore Saint James
    Apr 7 at 15:00












    $begingroup$
    @EleonoreSaintJames, my answer as two upvotes (you, TonyK) and a downvote. The other upvote of TonyK is also mine.
    $endgroup$
    – Martín-Blas Pérez Pinilla
    Apr 7 at 15:02





    $begingroup$
    @EleonoreSaintJames, my answer as two upvotes (you, TonyK) and a downvote. The other upvote of TonyK is also mine.
    $endgroup$
    – Martín-Blas Pérez Pinilla
    Apr 7 at 15:02













    $begingroup$
    @EleonoreSaintJames: Once you reach a certain reputation, you can click on the vote counter to see the number of upvotes and downvotes. This answer currently has two upvotes (from you and me!) and one downvote.
    $endgroup$
    – TonyK
    Apr 7 at 15:03




    $begingroup$
    @EleonoreSaintJames: Once you reach a certain reputation, you can click on the vote counter to see the number of upvotes and downvotes. This answer currently has two upvotes (from you and me!) and one downvote.
    $endgroup$
    – TonyK
    Apr 7 at 15:03











    5












    $begingroup$

    The problem is not that the original definition requires the existence of the elements of the standards (Thumb, Index etc.) If we have a reasonable Set Theory, we can always find a set with five elements.



    The problem is that the equivalence class so defined is a proper Class, not a Set; and the aim is to construct as much mathematics as possible using Sets only, as constructed using the Axioms that we allow ourselves.



    So we define $5$ iteratively as
    $$0=emptyset$$
    $$1=0$$
    $$2=0,1$$
    $$3=0,1,2$$
    $$4=0,1,2,3$$
    $$5=0,1,2,3,4$$



    which are all well-defined Sets.






    share|cite|improve this answer









    $endgroup$

















      5












      $begingroup$

      The problem is not that the original definition requires the existence of the elements of the standards (Thumb, Index etc.) If we have a reasonable Set Theory, we can always find a set with five elements.



      The problem is that the equivalence class so defined is a proper Class, not a Set; and the aim is to construct as much mathematics as possible using Sets only, as constructed using the Axioms that we allow ourselves.



      So we define $5$ iteratively as
      $$0=emptyset$$
      $$1=0$$
      $$2=0,1$$
      $$3=0,1,2$$
      $$4=0,1,2,3$$
      $$5=0,1,2,3,4$$



      which are all well-defined Sets.






      share|cite|improve this answer









      $endgroup$















        5












        5








        5





        $begingroup$

        The problem is not that the original definition requires the existence of the elements of the standards (Thumb, Index etc.) If we have a reasonable Set Theory, we can always find a set with five elements.



        The problem is that the equivalence class so defined is a proper Class, not a Set; and the aim is to construct as much mathematics as possible using Sets only, as constructed using the Axioms that we allow ourselves.



        So we define $5$ iteratively as
        $$0=emptyset$$
        $$1=0$$
        $$2=0,1$$
        $$3=0,1,2$$
        $$4=0,1,2,3$$
        $$5=0,1,2,3,4$$



        which are all well-defined Sets.






        share|cite|improve this answer









        $endgroup$



        The problem is not that the original definition requires the existence of the elements of the standards (Thumb, Index etc.) If we have a reasonable Set Theory, we can always find a set with five elements.



        The problem is that the equivalence class so defined is a proper Class, not a Set; and the aim is to construct as much mathematics as possible using Sets only, as constructed using the Axioms that we allow ourselves.



        So we define $5$ iteratively as
        $$0=emptyset$$
        $$1=0$$
        $$2=0,1$$
        $$3=0,1,2$$
        $$4=0,1,2,3$$
        $$5=0,1,2,3,4$$



        which are all well-defined Sets.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Apr 7 at 14:54









        TonyKTonyK

        44k358137




        44k358137



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178282%2fwhy-has-russells-definition-of-numbers-using-equivalence-classes-been-finally-a%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            getting Checkpoint VPN SSL Network Extender working in the command lineHow to connect to CheckPoint VPN on Ubuntu 18.04LTS?Will the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayVPN SSL Network Extender in FirefoxLinux Checkpoint SNX tool configuration issuesCheck Point - Connect under Linux - snx + OTPSNX VPN Ububuntu 18.XXUsing Checkpoint VPN SSL Network Extender CLI with certificateVPN with network manager (nm-applet) is not workingWill the Linux ( red-hat ) Open VPNC Client connect to checkpoint or nortel VPN gateways?VPN client for linux machine + support checkpoint gatewayImport VPN config files to NetworkManager from command lineTrouble connecting to VPN using network-manager, while command line worksStart a VPN connection with PPTP protocol on command linestarting a docker service daemon breaks the vpn networkCan't connect to vpn with Network-managerVPN SSL Network Extender in FirefoxUsing Checkpoint VPN SSL Network Extender CLI with certificate

            NetworkManager fails with “Could not find source connection”Trouble connecting to VPN using network-manager, while command line worksHow can I be notified about state changes to a VPN adapterBacktrack 5 R3 - Refuses to connect to VPNFeed all traffic through OpenVPN for a specific network namespace onlyRun daemon on startup in Debian once openvpn connection establishedpfsense tcp connection between openvpn and lan is brokenInternet connection problem with web browsers onlyWhy does NetworkManager explicitly support tun/tap devices?Browser issues with VPNTwo IP addresses assigned to the same network card - OpenVPN issues?Cannot connect to WiFi with nmcli, although secrets are provided

            대한민국 목차 국명 지리 역사 정치 국방 경제 사회 문화 국제 순위 관련 항목 각주 외부 링크 둘러보기 메뉴북위 37° 34′ 08″ 동경 126° 58′ 36″ / 북위 37.568889° 동경 126.976667°  / 37.568889; 126.976667ehThe Korean Repository문단을 편집문단을 편집추가해Clarkson PLC 사Report for Selected Countries and Subjects-Korea“Human Development Index and its components: P.198”“http://www.law.go.kr/%EB%B2%95%EB%A0%B9/%EB%8C%80%ED%95%9C%EB%AF%BC%EA%B5%AD%EA%B5%AD%EA%B8%B0%EB%B2%95”"한국은 국제법상 한반도 유일 합법정부 아니다" - 오마이뉴스 모바일Report for Selected Countries and Subjects: South Korea격동의 역사와 함께한 조선일보 90년 : 조선일보 인수해 혁신시킨 신석우, 임시정부 때는 '대한민국' 국호(國號) 정해《우리가 몰랐던 우리 역사: 나라 이름의 비밀을 찾아가는 역사 여행》“남북 공식호칭 ‘남한’‘북한’으로 쓴다”“Corea 대 Korea, 누가 이긴 거야?”국내기후자료 - 한국[김대중 前 대통령 서거] 과감한 구조개혁 'DJ노믹스'로 최단기간 환란극복 :: 네이버 뉴스“이라크 "韓-쿠르드 유전개발 MOU 승인 안해"(종합)”“해외 우리국민 추방사례 43%가 일본”차기전차 K2'흑표'의 세계 최고 전력 분석, 쿠키뉴스 엄기영, 2007-03-02두산인프라, 헬기잡는 장갑차 'K21'...내년부터 공급, 고뉴스 이대준, 2008-10-30과거 내용 찾기mk 뉴스 - 구매력 기준으로 보면 한국 1인당 소득 3만弗과거 내용 찾기"The N-11: More Than an Acronym"Archived조선일보 최우석, 2008-11-01Global 500 2008: Countries - South Korea“몇년째 '시한폭탄'... 가계부채, 올해는 터질까”가구당 부채 5000만원 처음 넘어서“‘빚’으로 내몰리는 사회.. 위기의 가계대출”“[경제365] 공공부문 부채 급증…800조 육박”“"소득 양극화 다소 완화...불평등은 여전"”“공정사회·공생발전 한참 멀었네”iSuppli,08年2QのDRAMシェア・ランキングを発表(08/8/11)South Korea dominates shipbuilding industry | Stock Market News & Stocks to Watch from StraightStocks한국 자동차 생산, 3년 연속 세계 5위자동차수출 '현대-삼성 웃고 기아-대우-쌍용은 울고' 과거 내용 찾기동반성장위 창립 1주년 맞아Archived"중기적합 3개업종 합의 무시한 채 선정"李대통령, 사업 무분별 확장 소상공인 생계 위협 질타삼성-LG, 서민업종인 빵·분식사업 잇따라 철수상생은 뒷전…SSM ‘몸집 불리기’ 혈안Archived“경부고속도에 '아시안하이웨이' 표지판”'철의 실크로드' 앞서 '말(言)의 실크로드'부터, 프레시안 정창현, 2008-10-01“'서울 지하철은 안전한가?'”“서울시 “올해 안에 모든 지하철역 스크린도어 설치””“부산지하철 1,2호선 승강장 안전펜스 설치 완료”“전교조, 정부 노조 통계서 처음 빠져”“[Weekly BIZ] 도요타 '제로 이사회'가 리콜 사태 불러들였다”“S Korea slams high tuition costs”““정치가 여론 양극화 부채질… 합리주의 절실””“〈"`촛불집회'는 민주주의의 질적 변화 상징"〉”““촛불집회가 민주주의 왜곡 초래””“국민 65%, "한국 노사관계 대립적"”“한국 국가경쟁력 27위‥노사관계 '꼴찌'”“제대로 형성되지 않은 대한민국 이념지형”“[신년기획-갈등의 시대] 갈등지수 OECD 4위…사회적 손실 GDP 27% 무려 300조”“2012 총선-대선의 키워드는 '국민과 소통'”“한국 삶의 질 27위, 2000년과 2008년 연속 하위권 머물러”“[해피 코리아] 행복점수 68점…해외 평가선 '낙제점'”“한국 어린이·청소년 행복지수 3년 연속 OECD ‘꼴찌’”“한국 이혼율 OECD중 8위”“[통계청] 한국 이혼율 OECD 4위”“오피니언 [이렇게 생각한다] `부부의 날` 에 돌아본 이혼율 1위 한국”“Suicide Rates by Country, Global Health Observatory Data Repository.”“1. 또 다른 차별”“오피니언 [편집자에게] '왕따'와 '패거리 정치' 심리는 닮은꼴”“[미래한국리포트] 무한경쟁에 빠진 대한민국”“대학생 98% "외모가 경쟁력이라는 말 동의"”“특급호텔 웨딩·200만원대 유모차… "남보다 더…" 호화病, 고질병 됐다”“[스트레스 공화국] ① 경쟁사회, 스트레스 쌓인다”““매일 30여명 자살 한국, 의사보다 무속인에…””“"자살 부르는 '우울증', 환자 중 85% 치료 안 받아"”“정신병원을 가다”“대한민국도 ‘묻지마 범죄’,안전지대 아니다”“유엔 "학생 '성적 지향'에 따른 차별 금지하라"”“유엔아동권리위원회 보고서 및 번역본 원문”“고졸 성공스토리 담은 '제빵왕 김탁구' 드라마 나온다”“‘빛 좋은 개살구’ 고졸 취업…실습 대신 착취”원본 문서“정신건강, 사회적 편견부터 고쳐드립니다”‘소통’과 ‘행복’에 목 마른 사회가 잠들어 있던 ‘심리학’ 깨웠다“[포토] 사유리-곽금주 교수의 유쾌한 심리상담”“"올해 한국인 평균 영화관람횟수 세계 1위"(종합)”“[게임연중기획] 게임은 문화다-여가활동 1순위 게임”“영화속 ‘영어 지상주의’ …“왠지 씁쓸한데””“2월 `신문 부수 인증기관` 지정..방송법 후속작업”“무료신문 성장동력 ‘차별성’과 ‘갈등해소’”대한민국 국회 법률지식정보시스템"Pew Research Center's Religion & Public Life Project: South Korea"“amp;vwcd=MT_ZTITLE&path=인구·가구%20>%20인구총조사%20>%20인구부문%20>%20 총조사인구(2005)%20>%20전수부문&oper_YN=Y&item=&keyword=종교별%20인구& amp;lang_mode=kor&list_id= 2005년 통계청 인구 총조사”원본 문서“한국인이 좋아하는 취미와 운동 (2004-2009)”“한국인이 좋아하는 취미와 운동 (2004-2014)”Archived“한국, `부분적 언론자유국' 강등〈프리덤하우스〉”“국경없는기자회 "한국, 인터넷감시 대상국"”“한국, 조선산업 1위 유지(S. Korea Stays Top Shipbuilding Nation) RZD-Partner Portal”원본 문서“한국, 4년 만에 ‘선박건조 1위’”“옛 마산시,인터넷속도 세계 1위”“"한국 초고속 인터넷망 세계1위"”“인터넷·휴대폰 요금, 외국보다 훨씬 비싸”“한국 관세행정 6년 연속 세계 '1위'”“한국 교통사고 사망자 수 OECD 회원국 중 2위”“결핵 후진국' 한국, 환자가 급증한 이유는”“수술은 신중해야… 자칫하면 생명 위협”대한민국분류대한민국의 지도대한민국 정부대표 다국어포털대한민국 전자정부대한민국 국회한국방송공사about korea and information korea브리태니커 백과사전(한국편)론리플래닛의 정보(한국편)CIA의 세계 정보(한국편)마리암 부디아 (Mariam Budia),『한국: 하늘이 내린 한 폭의 그림』, 서울: 트랜스라틴 19호 (2012년 3월)대한민국ehehehehehehehehehehehehehehWorldCat132441370n791268020000 0001 2308 81034078029-6026373548cb11863345f(데이터)00573706ge128495