What is the fastest integer factorization to break RSA?Largest integer factored by Shor's algorithm?Are there asymmetric cryptographic algorithms that are not based on integer factorization and discrete logarithm?RSA security assumptions - does breaking the DLP also break RSA?Is there an algorithm for factoring N, which is just as simple as this one, but faster?Integer factorization via geometric mean problemHow can I create an RSA modulus for which no one knows the factors?Effect of $L_n[1/4,c]$ integer factorization on RSA-2048Understanding the Hidden Subgroup Problem specific to Integer FactorizationMore Knowledge Integer FactorizationWhat are some of the best prime factorization algorithms and their effecitvityFermat's factorization method on weak RSA modulus

Is it possible to run Internet Explorer on OS X El Capitan?

How to prevent "they're falling in love" trope

Has there ever been an airliner design involving reducing generator load by installing solar panels?

Is there a hemisphere-neutral way of specifying a season?

I would say: "You are another teacher", but she is a woman and I am a man

A reference to a well-known characterization of scattered compact spaces

Facing a paradox: Earnshaw's theorem in one dimension

How to draw the figure with four pentagons?

How is it possible to have an ability score that is less than 3?

Why doesn't H₄O²⁺ exist?

How do I write bicross product symbols in latex?

I Accidentally Deleted a Stock Terminal Theme

How do conventional missiles fly?

What does it mean to describe someone as a butt steak?

Emailing HOD to enhance faculty application

CEO ridiculed me with gay jokes and grabbed me and wouldn't let go - now getting pushed out of company

Watching something be written to a file live with tail

Why is consensus so controversial in Britain?

Arrow those variables!

Theorems that impeded progress

What do you call someone who asks many questions?

How to take photos in burst mode, without vibration?

Memorizing the Keyboard

AES: Why is it a good practice to use only the first 16bytes of a hash for encryption?



What is the fastest integer factorization to break RSA?


Largest integer factored by Shor's algorithm?Are there asymmetric cryptographic algorithms that are not based on integer factorization and discrete logarithm?RSA security assumptions - does breaking the DLP also break RSA?Is there an algorithm for factoring N, which is just as simple as this one, but faster?Integer factorization via geometric mean problemHow can I create an RSA modulus for which no one knows the factors?Effect of $L_n[1/4,c]$ integer factorization on RSA-2048Understanding the Hidden Subgroup Problem specific to Integer FactorizationMore Knowledge Integer FactorizationWhat are some of the best prime factorization algorithms and their effecitvityFermat's factorization method on weak RSA modulus













8












$begingroup$


I read on Wikipedia, the fastest Algorithm for breaking RSA is GNFS.



And in one IEEE paper (MVFactor: A method to decrease processing time for factorization algorithm), I read the fastest algorithms are TDM, FFM and VFactor.



Which of these is actually right?










share|improve this question









New contributor




user56036 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    This conference looks like a paper mill… IEEE is a big organization; its name alone means very little, and it is well-known that many of its publications are essentially academic scams. Except for a single (unused!) citation about the NFS, the authors of this paper appear to be completely unaware of any developments in integer factorization in the past thirty years. Throw it away; ignore the conference; nothing is to be learned here except a lesson about perverse incentives in publish-or-perish academic culture and profiteering academic publishers.
    $endgroup$
    – Squeamish Ossifrage
    yesterday
















8












$begingroup$


I read on Wikipedia, the fastest Algorithm for breaking RSA is GNFS.



And in one IEEE paper (MVFactor: A method to decrease processing time for factorization algorithm), I read the fastest algorithms are TDM, FFM and VFactor.



Which of these is actually right?










share|improve this question









New contributor




user56036 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    This conference looks like a paper mill… IEEE is a big organization; its name alone means very little, and it is well-known that many of its publications are essentially academic scams. Except for a single (unused!) citation about the NFS, the authors of this paper appear to be completely unaware of any developments in integer factorization in the past thirty years. Throw it away; ignore the conference; nothing is to be learned here except a lesson about perverse incentives in publish-or-perish academic culture and profiteering academic publishers.
    $endgroup$
    – Squeamish Ossifrage
    yesterday














8












8








8


1



$begingroup$


I read on Wikipedia, the fastest Algorithm for breaking RSA is GNFS.



And in one IEEE paper (MVFactor: A method to decrease processing time for factorization algorithm), I read the fastest algorithms are TDM, FFM and VFactor.



Which of these is actually right?










share|improve this question









New contributor




user56036 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I read on Wikipedia, the fastest Algorithm for breaking RSA is GNFS.



And in one IEEE paper (MVFactor: A method to decrease processing time for factorization algorithm), I read the fastest algorithms are TDM, FFM and VFactor.



Which of these is actually right?







factoring






share|improve this question









New contributor




user56036 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




user56036 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 2 days ago









kelalaka

8,67022351




8,67022351






New contributor




user56036 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 days ago









user56036user56036

412




412




New contributor




user56036 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





user56036 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






user56036 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 1




    $begingroup$
    This conference looks like a paper mill… IEEE is a big organization; its name alone means very little, and it is well-known that many of its publications are essentially academic scams. Except for a single (unused!) citation about the NFS, the authors of this paper appear to be completely unaware of any developments in integer factorization in the past thirty years. Throw it away; ignore the conference; nothing is to be learned here except a lesson about perverse incentives in publish-or-perish academic culture and profiteering academic publishers.
    $endgroup$
    – Squeamish Ossifrage
    yesterday













  • 1




    $begingroup$
    This conference looks like a paper mill… IEEE is a big organization; its name alone means very little, and it is well-known that many of its publications are essentially academic scams. Except for a single (unused!) citation about the NFS, the authors of this paper appear to be completely unaware of any developments in integer factorization in the past thirty years. Throw it away; ignore the conference; nothing is to be learned here except a lesson about perverse incentives in publish-or-perish academic culture and profiteering academic publishers.
    $endgroup$
    – Squeamish Ossifrage
    yesterday








1




1




$begingroup$
This conference looks like a paper mill… IEEE is a big organization; its name alone means very little, and it is well-known that many of its publications are essentially academic scams. Except for a single (unused!) citation about the NFS, the authors of this paper appear to be completely unaware of any developments in integer factorization in the past thirty years. Throw it away; ignore the conference; nothing is to be learned here except a lesson about perverse incentives in publish-or-perish academic culture and profiteering academic publishers.
$endgroup$
– Squeamish Ossifrage
yesterday





$begingroup$
This conference looks like a paper mill… IEEE is a big organization; its name alone means very little, and it is well-known that many of its publications are essentially academic scams. Except for a single (unused!) citation about the NFS, the authors of this paper appear to be completely unaware of any developments in integer factorization in the past thirty years. Throw it away; ignore the conference; nothing is to be learned here except a lesson about perverse incentives in publish-or-perish academic culture and profiteering academic publishers.
$endgroup$
– Squeamish Ossifrage
yesterday











3 Answers
3






active

oldest

votes


















11












$begingroup$

The IEEE paper is silly.



The factorization method they give is quite slow, except for rare cases. For example, in their table 1, where they proudly show that their improved algorithm takes 653.14 seconds to factor a 67 bit number; well, I just tried it using a more conventional algorithm, and it took 6msec; yes, that's 100,000 times as fast...






share|improve this answer









$endgroup$








  • 3




    $begingroup$
    Well I think the point of the paper is to improve upon Fermat-Factoring class algorithms, so it is expected that the given algorithm(s) get beaten by the more standard ones for small sizes, but excel on large inputs with (relatively small) prime differences?
    $endgroup$
    – SEJPM
    2 days ago






  • 3




    $begingroup$
    @SEJPM: if that's the case, then they probably shouldn't go on so much about RSA (where the probability of having a sufficiently small difference is tiny)
    $endgroup$
    – poncho
    2 days ago


















8












$begingroup$


Which of these is actually right?




Both. From reading the abstract it appears the papper doesn't claim that "VFactor" or Fermat Factorization ("FFM") or Trial Division ("TDM") are the best methods in general. However, if the difference between primes $p,q$ with $n=pq$ is really small, like $ll2^100$$;dagger$, then FFM (and probably the VFactor variants as well) will be a lot faster.



Though in general the difference between two same-length random primes is about $sqrtn/2$ which is about $2^1024$ for realistically sized moduli, so these attacks don't work there. Even with 400-bit moduli, which are somewhat easily crackable using a home desktop using the GNFS, this difference is still about $2^200$ and thus way too large.



Of course the implementation of the key generation may be faulty and emit primes in a too small interval and it's in these cases where these specialized algorithms really shine.



$dagger$: "$ll$" meaning "a lot less" here






share|improve this answer









$endgroup$




















    5












    $begingroup$

    Quantum algorithms



    There is of course Shor's algorithm, but as this algorithm only runs on quantum computers with a lot of qubits it's not capable to factor larger numbers than $21$ (reference).



    There are multiple apparent new records using adiabatic quantum computation, although some are apparently stunts: See fgrieu's answer on a related question.



    Classical algorithms



    The general number field sieve is the fastest known classical algorithm for factoring numbers over $10^100$.



    The Quadratic sieve algorithm is the fastest known classical algorithm for factoring numbers under $10^100$.






    share|improve this answer











    $endgroup$








    • 4




      $begingroup$
      Actually, the factorization of 56153 was a stunt; the factors were deliberately chosen to have a special relation (differed in only 2 bits) and it's easy to factor when the factors have a known relation. AFAIK, the largest number that has been factored to date using a generic quantum factorization algorithm is 21.
      $endgroup$
      – poncho
      2 days ago











    • $begingroup$
      I've always wondered why QS is (at least, consensually said to be) faster than GNFS below a certain thresold (not so consensual), and how much of that is due to lack of work on optimizing GNFS for smaller values.
      $endgroup$
      – fgrieu
      2 days ago










    • $begingroup$
      @poncho As far as I know, all quantum factorization claims to date are stunts, including the 15 and 21 claims. They do a trivial calculation on a tiny quantum computer and then find a tortured way to argue that it factored a prime since that sounds better in the press release. That was the point of the 56153-factorization paper (Quantum factorization of 56153 with only 4 qubits by Dattani and Bryans).
      $endgroup$
      – benrg
      2 days ago






    • 1




      $begingroup$
      @poncho The paper with the 21-factoring claim is Experimental realisation of Shor's quantum factoring algorithm using qubit recycling by Martin-Lopez et al. I just skimmed it, and as far as I can tell, their actual experiment used a single qubit and a single qutrit. Can a machine with $1 + log_2 3$ qubits run Shor's algorithm on the input 21? They say yes in the title, but I would say no. Dattani and Bryans agree that the factorizations of 15 and 21 "were not genuine implementations of Shor’s algorithm".
      $endgroup$
      – benrg
      2 days ago










    • $begingroup$
      Er, factored a composite.
      $endgroup$
      – benrg
      2 days ago












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "281"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    user56036 is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcrypto.stackexchange.com%2fquestions%2f68480%2fwhat-is-the-fastest-integer-factorization-to-break-rsa%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    11












    $begingroup$

    The IEEE paper is silly.



    The factorization method they give is quite slow, except for rare cases. For example, in their table 1, where they proudly show that their improved algorithm takes 653.14 seconds to factor a 67 bit number; well, I just tried it using a more conventional algorithm, and it took 6msec; yes, that's 100,000 times as fast...






    share|improve this answer









    $endgroup$








    • 3




      $begingroup$
      Well I think the point of the paper is to improve upon Fermat-Factoring class algorithms, so it is expected that the given algorithm(s) get beaten by the more standard ones for small sizes, but excel on large inputs with (relatively small) prime differences?
      $endgroup$
      – SEJPM
      2 days ago






    • 3




      $begingroup$
      @SEJPM: if that's the case, then they probably shouldn't go on so much about RSA (where the probability of having a sufficiently small difference is tiny)
      $endgroup$
      – poncho
      2 days ago















    11












    $begingroup$

    The IEEE paper is silly.



    The factorization method they give is quite slow, except for rare cases. For example, in their table 1, where they proudly show that their improved algorithm takes 653.14 seconds to factor a 67 bit number; well, I just tried it using a more conventional algorithm, and it took 6msec; yes, that's 100,000 times as fast...






    share|improve this answer









    $endgroup$








    • 3




      $begingroup$
      Well I think the point of the paper is to improve upon Fermat-Factoring class algorithms, so it is expected that the given algorithm(s) get beaten by the more standard ones for small sizes, but excel on large inputs with (relatively small) prime differences?
      $endgroup$
      – SEJPM
      2 days ago






    • 3




      $begingroup$
      @SEJPM: if that's the case, then they probably shouldn't go on so much about RSA (where the probability of having a sufficiently small difference is tiny)
      $endgroup$
      – poncho
      2 days ago













    11












    11








    11





    $begingroup$

    The IEEE paper is silly.



    The factorization method they give is quite slow, except for rare cases. For example, in their table 1, where they proudly show that their improved algorithm takes 653.14 seconds to factor a 67 bit number; well, I just tried it using a more conventional algorithm, and it took 6msec; yes, that's 100,000 times as fast...






    share|improve this answer









    $endgroup$



    The IEEE paper is silly.



    The factorization method they give is quite slow, except for rare cases. For example, in their table 1, where they proudly show that their improved algorithm takes 653.14 seconds to factor a 67 bit number; well, I just tried it using a more conventional algorithm, and it took 6msec; yes, that's 100,000 times as fast...







    share|improve this answer












    share|improve this answer



    share|improve this answer










    answered 2 days ago









    ponchoponcho

    93.7k2146244




    93.7k2146244







    • 3




      $begingroup$
      Well I think the point of the paper is to improve upon Fermat-Factoring class algorithms, so it is expected that the given algorithm(s) get beaten by the more standard ones for small sizes, but excel on large inputs with (relatively small) prime differences?
      $endgroup$
      – SEJPM
      2 days ago






    • 3




      $begingroup$
      @SEJPM: if that's the case, then they probably shouldn't go on so much about RSA (where the probability of having a sufficiently small difference is tiny)
      $endgroup$
      – poncho
      2 days ago












    • 3




      $begingroup$
      Well I think the point of the paper is to improve upon Fermat-Factoring class algorithms, so it is expected that the given algorithm(s) get beaten by the more standard ones for small sizes, but excel on large inputs with (relatively small) prime differences?
      $endgroup$
      – SEJPM
      2 days ago






    • 3




      $begingroup$
      @SEJPM: if that's the case, then they probably shouldn't go on so much about RSA (where the probability of having a sufficiently small difference is tiny)
      $endgroup$
      – poncho
      2 days ago







    3




    3




    $begingroup$
    Well I think the point of the paper is to improve upon Fermat-Factoring class algorithms, so it is expected that the given algorithm(s) get beaten by the more standard ones for small sizes, but excel on large inputs with (relatively small) prime differences?
    $endgroup$
    – SEJPM
    2 days ago




    $begingroup$
    Well I think the point of the paper is to improve upon Fermat-Factoring class algorithms, so it is expected that the given algorithm(s) get beaten by the more standard ones for small sizes, but excel on large inputs with (relatively small) prime differences?
    $endgroup$
    – SEJPM
    2 days ago




    3




    3




    $begingroup$
    @SEJPM: if that's the case, then they probably shouldn't go on so much about RSA (where the probability of having a sufficiently small difference is tiny)
    $endgroup$
    – poncho
    2 days ago




    $begingroup$
    @SEJPM: if that's the case, then they probably shouldn't go on so much about RSA (where the probability of having a sufficiently small difference is tiny)
    $endgroup$
    – poncho
    2 days ago











    8












    $begingroup$


    Which of these is actually right?




    Both. From reading the abstract it appears the papper doesn't claim that "VFactor" or Fermat Factorization ("FFM") or Trial Division ("TDM") are the best methods in general. However, if the difference between primes $p,q$ with $n=pq$ is really small, like $ll2^100$$;dagger$, then FFM (and probably the VFactor variants as well) will be a lot faster.



    Though in general the difference between two same-length random primes is about $sqrtn/2$ which is about $2^1024$ for realistically sized moduli, so these attacks don't work there. Even with 400-bit moduli, which are somewhat easily crackable using a home desktop using the GNFS, this difference is still about $2^200$ and thus way too large.



    Of course the implementation of the key generation may be faulty and emit primes in a too small interval and it's in these cases where these specialized algorithms really shine.



    $dagger$: "$ll$" meaning "a lot less" here






    share|improve this answer









    $endgroup$

















      8












      $begingroup$


      Which of these is actually right?




      Both. From reading the abstract it appears the papper doesn't claim that "VFactor" or Fermat Factorization ("FFM") or Trial Division ("TDM") are the best methods in general. However, if the difference between primes $p,q$ with $n=pq$ is really small, like $ll2^100$$;dagger$, then FFM (and probably the VFactor variants as well) will be a lot faster.



      Though in general the difference between two same-length random primes is about $sqrtn/2$ which is about $2^1024$ for realistically sized moduli, so these attacks don't work there. Even with 400-bit moduli, which are somewhat easily crackable using a home desktop using the GNFS, this difference is still about $2^200$ and thus way too large.



      Of course the implementation of the key generation may be faulty and emit primes in a too small interval and it's in these cases where these specialized algorithms really shine.



      $dagger$: "$ll$" meaning "a lot less" here






      share|improve this answer









      $endgroup$















        8












        8








        8





        $begingroup$


        Which of these is actually right?




        Both. From reading the abstract it appears the papper doesn't claim that "VFactor" or Fermat Factorization ("FFM") or Trial Division ("TDM") are the best methods in general. However, if the difference between primes $p,q$ with $n=pq$ is really small, like $ll2^100$$;dagger$, then FFM (and probably the VFactor variants as well) will be a lot faster.



        Though in general the difference between two same-length random primes is about $sqrtn/2$ which is about $2^1024$ for realistically sized moduli, so these attacks don't work there. Even with 400-bit moduli, which are somewhat easily crackable using a home desktop using the GNFS, this difference is still about $2^200$ and thus way too large.



        Of course the implementation of the key generation may be faulty and emit primes in a too small interval and it's in these cases where these specialized algorithms really shine.



        $dagger$: "$ll$" meaning "a lot less" here






        share|improve this answer









        $endgroup$




        Which of these is actually right?




        Both. From reading the abstract it appears the papper doesn't claim that "VFactor" or Fermat Factorization ("FFM") or Trial Division ("TDM") are the best methods in general. However, if the difference between primes $p,q$ with $n=pq$ is really small, like $ll2^100$$;dagger$, then FFM (and probably the VFactor variants as well) will be a lot faster.



        Though in general the difference between two same-length random primes is about $sqrtn/2$ which is about $2^1024$ for realistically sized moduli, so these attacks don't work there. Even with 400-bit moduli, which are somewhat easily crackable using a home desktop using the GNFS, this difference is still about $2^200$ and thus way too large.



        Of course the implementation of the key generation may be faulty and emit primes in a too small interval and it's in these cases where these specialized algorithms really shine.



        $dagger$: "$ll$" meaning "a lot less" here







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered 2 days ago









        SEJPMSEJPM

        29.3k659139




        29.3k659139





















            5












            $begingroup$

            Quantum algorithms



            There is of course Shor's algorithm, but as this algorithm only runs on quantum computers with a lot of qubits it's not capable to factor larger numbers than $21$ (reference).



            There are multiple apparent new records using adiabatic quantum computation, although some are apparently stunts: See fgrieu's answer on a related question.



            Classical algorithms



            The general number field sieve is the fastest known classical algorithm for factoring numbers over $10^100$.



            The Quadratic sieve algorithm is the fastest known classical algorithm for factoring numbers under $10^100$.






            share|improve this answer











            $endgroup$








            • 4




              $begingroup$
              Actually, the factorization of 56153 was a stunt; the factors were deliberately chosen to have a special relation (differed in only 2 bits) and it's easy to factor when the factors have a known relation. AFAIK, the largest number that has been factored to date using a generic quantum factorization algorithm is 21.
              $endgroup$
              – poncho
              2 days ago











            • $begingroup$
              I've always wondered why QS is (at least, consensually said to be) faster than GNFS below a certain thresold (not so consensual), and how much of that is due to lack of work on optimizing GNFS for smaller values.
              $endgroup$
              – fgrieu
              2 days ago










            • $begingroup$
              @poncho As far as I know, all quantum factorization claims to date are stunts, including the 15 and 21 claims. They do a trivial calculation on a tiny quantum computer and then find a tortured way to argue that it factored a prime since that sounds better in the press release. That was the point of the 56153-factorization paper (Quantum factorization of 56153 with only 4 qubits by Dattani and Bryans).
              $endgroup$
              – benrg
              2 days ago






            • 1




              $begingroup$
              @poncho The paper with the 21-factoring claim is Experimental realisation of Shor's quantum factoring algorithm using qubit recycling by Martin-Lopez et al. I just skimmed it, and as far as I can tell, their actual experiment used a single qubit and a single qutrit. Can a machine with $1 + log_2 3$ qubits run Shor's algorithm on the input 21? They say yes in the title, but I would say no. Dattani and Bryans agree that the factorizations of 15 and 21 "were not genuine implementations of Shor’s algorithm".
              $endgroup$
              – benrg
              2 days ago










            • $begingroup$
              Er, factored a composite.
              $endgroup$
              – benrg
              2 days ago
















            5












            $begingroup$

            Quantum algorithms



            There is of course Shor's algorithm, but as this algorithm only runs on quantum computers with a lot of qubits it's not capable to factor larger numbers than $21$ (reference).



            There are multiple apparent new records using adiabatic quantum computation, although some are apparently stunts: See fgrieu's answer on a related question.



            Classical algorithms



            The general number field sieve is the fastest known classical algorithm for factoring numbers over $10^100$.



            The Quadratic sieve algorithm is the fastest known classical algorithm for factoring numbers under $10^100$.






            share|improve this answer











            $endgroup$








            • 4




              $begingroup$
              Actually, the factorization of 56153 was a stunt; the factors were deliberately chosen to have a special relation (differed in only 2 bits) and it's easy to factor when the factors have a known relation. AFAIK, the largest number that has been factored to date using a generic quantum factorization algorithm is 21.
              $endgroup$
              – poncho
              2 days ago











            • $begingroup$
              I've always wondered why QS is (at least, consensually said to be) faster than GNFS below a certain thresold (not so consensual), and how much of that is due to lack of work on optimizing GNFS for smaller values.
              $endgroup$
              – fgrieu
              2 days ago










            • $begingroup$
              @poncho As far as I know, all quantum factorization claims to date are stunts, including the 15 and 21 claims. They do a trivial calculation on a tiny quantum computer and then find a tortured way to argue that it factored a prime since that sounds better in the press release. That was the point of the 56153-factorization paper (Quantum factorization of 56153 with only 4 qubits by Dattani and Bryans).
              $endgroup$
              – benrg
              2 days ago






            • 1




              $begingroup$
              @poncho The paper with the 21-factoring claim is Experimental realisation of Shor's quantum factoring algorithm using qubit recycling by Martin-Lopez et al. I just skimmed it, and as far as I can tell, their actual experiment used a single qubit and a single qutrit. Can a machine with $1 + log_2 3$ qubits run Shor's algorithm on the input 21? They say yes in the title, but I would say no. Dattani and Bryans agree that the factorizations of 15 and 21 "were not genuine implementations of Shor’s algorithm".
              $endgroup$
              – benrg
              2 days ago










            • $begingroup$
              Er, factored a composite.
              $endgroup$
              – benrg
              2 days ago














            5












            5








            5





            $begingroup$

            Quantum algorithms



            There is of course Shor's algorithm, but as this algorithm only runs on quantum computers with a lot of qubits it's not capable to factor larger numbers than $21$ (reference).



            There are multiple apparent new records using adiabatic quantum computation, although some are apparently stunts: See fgrieu's answer on a related question.



            Classical algorithms



            The general number field sieve is the fastest known classical algorithm for factoring numbers over $10^100$.



            The Quadratic sieve algorithm is the fastest known classical algorithm for factoring numbers under $10^100$.






            share|improve this answer











            $endgroup$



            Quantum algorithms



            There is of course Shor's algorithm, but as this algorithm only runs on quantum computers with a lot of qubits it's not capable to factor larger numbers than $21$ (reference).



            There are multiple apparent new records using adiabatic quantum computation, although some are apparently stunts: See fgrieu's answer on a related question.



            Classical algorithms



            The general number field sieve is the fastest known classical algorithm for factoring numbers over $10^100$.



            The Quadratic sieve algorithm is the fastest known classical algorithm for factoring numbers under $10^100$.







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited 2 days ago

























            answered 2 days ago









            AleksanderRasAleksanderRas

            2,9471935




            2,9471935







            • 4




              $begingroup$
              Actually, the factorization of 56153 was a stunt; the factors were deliberately chosen to have a special relation (differed in only 2 bits) and it's easy to factor when the factors have a known relation. AFAIK, the largest number that has been factored to date using a generic quantum factorization algorithm is 21.
              $endgroup$
              – poncho
              2 days ago











            • $begingroup$
              I've always wondered why QS is (at least, consensually said to be) faster than GNFS below a certain thresold (not so consensual), and how much of that is due to lack of work on optimizing GNFS for smaller values.
              $endgroup$
              – fgrieu
              2 days ago










            • $begingroup$
              @poncho As far as I know, all quantum factorization claims to date are stunts, including the 15 and 21 claims. They do a trivial calculation on a tiny quantum computer and then find a tortured way to argue that it factored a prime since that sounds better in the press release. That was the point of the 56153-factorization paper (Quantum factorization of 56153 with only 4 qubits by Dattani and Bryans).
              $endgroup$
              – benrg
              2 days ago






            • 1




              $begingroup$
              @poncho The paper with the 21-factoring claim is Experimental realisation of Shor's quantum factoring algorithm using qubit recycling by Martin-Lopez et al. I just skimmed it, and as far as I can tell, their actual experiment used a single qubit and a single qutrit. Can a machine with $1 + log_2 3$ qubits run Shor's algorithm on the input 21? They say yes in the title, but I would say no. Dattani and Bryans agree that the factorizations of 15 and 21 "were not genuine implementations of Shor’s algorithm".
              $endgroup$
              – benrg
              2 days ago










            • $begingroup$
              Er, factored a composite.
              $endgroup$
              – benrg
              2 days ago













            • 4




              $begingroup$
              Actually, the factorization of 56153 was a stunt; the factors were deliberately chosen to have a special relation (differed in only 2 bits) and it's easy to factor when the factors have a known relation. AFAIK, the largest number that has been factored to date using a generic quantum factorization algorithm is 21.
              $endgroup$
              – poncho
              2 days ago











            • $begingroup$
              I've always wondered why QS is (at least, consensually said to be) faster than GNFS below a certain thresold (not so consensual), and how much of that is due to lack of work on optimizing GNFS for smaller values.
              $endgroup$
              – fgrieu
              2 days ago










            • $begingroup$
              @poncho As far as I know, all quantum factorization claims to date are stunts, including the 15 and 21 claims. They do a trivial calculation on a tiny quantum computer and then find a tortured way to argue that it factored a prime since that sounds better in the press release. That was the point of the 56153-factorization paper (Quantum factorization of 56153 with only 4 qubits by Dattani and Bryans).
              $endgroup$
              – benrg
              2 days ago






            • 1




              $begingroup$
              @poncho The paper with the 21-factoring claim is Experimental realisation of Shor's quantum factoring algorithm using qubit recycling by Martin-Lopez et al. I just skimmed it, and as far as I can tell, their actual experiment used a single qubit and a single qutrit. Can a machine with $1 + log_2 3$ qubits run Shor's algorithm on the input 21? They say yes in the title, but I would say no. Dattani and Bryans agree that the factorizations of 15 and 21 "were not genuine implementations of Shor’s algorithm".
              $endgroup$
              – benrg
              2 days ago










            • $begingroup$
              Er, factored a composite.
              $endgroup$
              – benrg
              2 days ago








            4




            4




            $begingroup$
            Actually, the factorization of 56153 was a stunt; the factors were deliberately chosen to have a special relation (differed in only 2 bits) and it's easy to factor when the factors have a known relation. AFAIK, the largest number that has been factored to date using a generic quantum factorization algorithm is 21.
            $endgroup$
            – poncho
            2 days ago





            $begingroup$
            Actually, the factorization of 56153 was a stunt; the factors were deliberately chosen to have a special relation (differed in only 2 bits) and it's easy to factor when the factors have a known relation. AFAIK, the largest number that has been factored to date using a generic quantum factorization algorithm is 21.
            $endgroup$
            – poncho
            2 days ago













            $begingroup$
            I've always wondered why QS is (at least, consensually said to be) faster than GNFS below a certain thresold (not so consensual), and how much of that is due to lack of work on optimizing GNFS for smaller values.
            $endgroup$
            – fgrieu
            2 days ago




            $begingroup$
            I've always wondered why QS is (at least, consensually said to be) faster than GNFS below a certain thresold (not so consensual), and how much of that is due to lack of work on optimizing GNFS for smaller values.
            $endgroup$
            – fgrieu
            2 days ago












            $begingroup$
            @poncho As far as I know, all quantum factorization claims to date are stunts, including the 15 and 21 claims. They do a trivial calculation on a tiny quantum computer and then find a tortured way to argue that it factored a prime since that sounds better in the press release. That was the point of the 56153-factorization paper (Quantum factorization of 56153 with only 4 qubits by Dattani and Bryans).
            $endgroup$
            – benrg
            2 days ago




            $begingroup$
            @poncho As far as I know, all quantum factorization claims to date are stunts, including the 15 and 21 claims. They do a trivial calculation on a tiny quantum computer and then find a tortured way to argue that it factored a prime since that sounds better in the press release. That was the point of the 56153-factorization paper (Quantum factorization of 56153 with only 4 qubits by Dattani and Bryans).
            $endgroup$
            – benrg
            2 days ago




            1




            1




            $begingroup$
            @poncho The paper with the 21-factoring claim is Experimental realisation of Shor's quantum factoring algorithm using qubit recycling by Martin-Lopez et al. I just skimmed it, and as far as I can tell, their actual experiment used a single qubit and a single qutrit. Can a machine with $1 + log_2 3$ qubits run Shor's algorithm on the input 21? They say yes in the title, but I would say no. Dattani and Bryans agree that the factorizations of 15 and 21 "were not genuine implementations of Shor’s algorithm".
            $endgroup$
            – benrg
            2 days ago




            $begingroup$
            @poncho The paper with the 21-factoring claim is Experimental realisation of Shor's quantum factoring algorithm using qubit recycling by Martin-Lopez et al. I just skimmed it, and as far as I can tell, their actual experiment used a single qubit and a single qutrit. Can a machine with $1 + log_2 3$ qubits run Shor's algorithm on the input 21? They say yes in the title, but I would say no. Dattani and Bryans agree that the factorizations of 15 and 21 "were not genuine implementations of Shor’s algorithm".
            $endgroup$
            – benrg
            2 days ago












            $begingroup$
            Er, factored a composite.
            $endgroup$
            – benrg
            2 days ago





            $begingroup$
            Er, factored a composite.
            $endgroup$
            – benrg
            2 days ago











            user56036 is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            user56036 is a new contributor. Be nice, and check out our Code of Conduct.












            user56036 is a new contributor. Be nice, and check out our Code of Conduct.











            user56036 is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Cryptography Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcrypto.stackexchange.com%2fquestions%2f68480%2fwhat-is-the-fastest-integer-factorization-to-break-rsa%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Àrd-bhaile Cathair chruinne/Baile mòr cruinne | Artagailean ceangailte | Clàr-taice na seòladaireachd

            Cannot Extend partition with GParted The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Community Moderator Election ResultsCan't increase partition size with GParted?GParted doesn't recognize the unallocated space after my current partitionWhat is the best way to add unallocated space located before to Ubuntu 12.04 partition with GParted live?I can't figure out how to extend my Arch home partition into free spaceGparted Linux Mint 18.1 issueTrying to extend but swap partition is showing as Unknown in Gparted, shows proper from fdiskRearrange partitions in gparted to extend a partitionUnable to extend partition even though unallocated space is next to it using GPartedAllocate free space to root partitiongparted: how to merge unallocated space with a partition

            대한민국 목차 국명 지리 역사 정치 국방 경제 사회 문화 국제 순위 관련 항목 각주 외부 링크 둘러보기 메뉴북위 37° 34′ 08″ 동경 126° 58′ 36″ / 북위 37.568889° 동경 126.976667°  / 37.568889; 126.976667ehThe Korean Repository문단을 편집문단을 편집추가해Clarkson PLC 사Report for Selected Countries and Subjects-Korea“Human Development Index and its components: P.198”“http://www.law.go.kr/%EB%B2%95%EB%A0%B9/%EB%8C%80%ED%95%9C%EB%AF%BC%EA%B5%AD%EA%B5%AD%EA%B8%B0%EB%B2%95”"한국은 국제법상 한반도 유일 합법정부 아니다" - 오마이뉴스 모바일Report for Selected Countries and Subjects: South Korea격동의 역사와 함께한 조선일보 90년 : 조선일보 인수해 혁신시킨 신석우, 임시정부 때는 '대한민국' 국호(國號) 정해《우리가 몰랐던 우리 역사: 나라 이름의 비밀을 찾아가는 역사 여행》“남북 공식호칭 ‘남한’‘북한’으로 쓴다”“Corea 대 Korea, 누가 이긴 거야?”국내기후자료 - 한국[김대중 前 대통령 서거] 과감한 구조개혁 'DJ노믹스'로 최단기간 환란극복 :: 네이버 뉴스“이라크 "韓-쿠르드 유전개발 MOU 승인 안해"(종합)”“해외 우리국민 추방사례 43%가 일본”차기전차 K2'흑표'의 세계 최고 전력 분석, 쿠키뉴스 엄기영, 2007-03-02두산인프라, 헬기잡는 장갑차 'K21'...내년부터 공급, 고뉴스 이대준, 2008-10-30과거 내용 찾기mk 뉴스 - 구매력 기준으로 보면 한국 1인당 소득 3만弗과거 내용 찾기"The N-11: More Than an Acronym"Archived조선일보 최우석, 2008-11-01Global 500 2008: Countries - South Korea“몇년째 '시한폭탄'... 가계부채, 올해는 터질까”가구당 부채 5000만원 처음 넘어서“‘빚’으로 내몰리는 사회.. 위기의 가계대출”“[경제365] 공공부문 부채 급증…800조 육박”“"소득 양극화 다소 완화...불평등은 여전"”“공정사회·공생발전 한참 멀었네”iSuppli,08年2QのDRAMシェア・ランキングを発表(08/8/11)South Korea dominates shipbuilding industry | Stock Market News & Stocks to Watch from StraightStocks한국 자동차 생산, 3년 연속 세계 5위자동차수출 '현대-삼성 웃고 기아-대우-쌍용은 울고' 과거 내용 찾기동반성장위 창립 1주년 맞아Archived"중기적합 3개업종 합의 무시한 채 선정"李대통령, 사업 무분별 확장 소상공인 생계 위협 질타삼성-LG, 서민업종인 빵·분식사업 잇따라 철수상생은 뒷전…SSM ‘몸집 불리기’ 혈안Archived“경부고속도에 '아시안하이웨이' 표지판”'철의 실크로드' 앞서 '말(言)의 실크로드'부터, 프레시안 정창현, 2008-10-01“'서울 지하철은 안전한가?'”“서울시 “올해 안에 모든 지하철역 스크린도어 설치””“부산지하철 1,2호선 승강장 안전펜스 설치 완료”“전교조, 정부 노조 통계서 처음 빠져”“[Weekly BIZ] 도요타 '제로 이사회'가 리콜 사태 불러들였다”“S Korea slams high tuition costs”““정치가 여론 양극화 부채질… 합리주의 절실””“〈"`촛불집회'는 민주주의의 질적 변화 상징"〉”““촛불집회가 민주주의 왜곡 초래””“국민 65%, "한국 노사관계 대립적"”“한국 국가경쟁력 27위‥노사관계 '꼴찌'”“제대로 형성되지 않은 대한민국 이념지형”“[신년기획-갈등의 시대] 갈등지수 OECD 4위…사회적 손실 GDP 27% 무려 300조”“2012 총선-대선의 키워드는 '국민과 소통'”“한국 삶의 질 27위, 2000년과 2008년 연속 하위권 머물러”“[해피 코리아] 행복점수 68점…해외 평가선 '낙제점'”“한국 어린이·청소년 행복지수 3년 연속 OECD ‘꼴찌’”“한국 이혼율 OECD중 8위”“[통계청] 한국 이혼율 OECD 4위”“오피니언 [이렇게 생각한다] `부부의 날` 에 돌아본 이혼율 1위 한국”“Suicide Rates by Country, Global Health Observatory Data Repository.”“1. 또 다른 차별”“오피니언 [편집자에게] '왕따'와 '패거리 정치' 심리는 닮은꼴”“[미래한국리포트] 무한경쟁에 빠진 대한민국”“대학생 98% "외모가 경쟁력이라는 말 동의"”“특급호텔 웨딩·200만원대 유모차… "남보다 더…" 호화病, 고질병 됐다”“[스트레스 공화국] ① 경쟁사회, 스트레스 쌓인다”““매일 30여명 자살 한국, 의사보다 무속인에…””“"자살 부르는 '우울증', 환자 중 85% 치료 안 받아"”“정신병원을 가다”“대한민국도 ‘묻지마 범죄’,안전지대 아니다”“유엔 "학생 '성적 지향'에 따른 차별 금지하라"”“유엔아동권리위원회 보고서 및 번역본 원문”“고졸 성공스토리 담은 '제빵왕 김탁구' 드라마 나온다”“‘빛 좋은 개살구’ 고졸 취업…실습 대신 착취”원본 문서“정신건강, 사회적 편견부터 고쳐드립니다”‘소통’과 ‘행복’에 목 마른 사회가 잠들어 있던 ‘심리학’ 깨웠다“[포토] 사유리-곽금주 교수의 유쾌한 심리상담”“"올해 한국인 평균 영화관람횟수 세계 1위"(종합)”“[게임연중기획] 게임은 문화다-여가활동 1순위 게임”“영화속 ‘영어 지상주의’ …“왠지 씁쓸한데””“2월 `신문 부수 인증기관` 지정..방송법 후속작업”“무료신문 성장동력 ‘차별성’과 ‘갈등해소’”대한민국 국회 법률지식정보시스템"Pew Research Center's Religion & Public Life Project: South Korea"“amp;vwcd=MT_ZTITLE&path=인구·가구%20>%20인구총조사%20>%20인구부문%20>%20 총조사인구(2005)%20>%20전수부문&oper_YN=Y&item=&keyword=종교별%20인구& amp;lang_mode=kor&list_id= 2005년 통계청 인구 총조사”원본 문서“한국인이 좋아하는 취미와 운동 (2004-2009)”“한국인이 좋아하는 취미와 운동 (2004-2014)”Archived“한국, `부분적 언론자유국' 강등〈프리덤하우스〉”“국경없는기자회 "한국, 인터넷감시 대상국"”“한국, 조선산업 1위 유지(S. Korea Stays Top Shipbuilding Nation) RZD-Partner Portal”원본 문서“한국, 4년 만에 ‘선박건조 1위’”“옛 마산시,인터넷속도 세계 1위”“"한국 초고속 인터넷망 세계1위"”“인터넷·휴대폰 요금, 외국보다 훨씬 비싸”“한국 관세행정 6년 연속 세계 '1위'”“한국 교통사고 사망자 수 OECD 회원국 중 2위”“결핵 후진국' 한국, 환자가 급증한 이유는”“수술은 신중해야… 자칫하면 생명 위협”대한민국분류대한민국의 지도대한민국 정부대표 다국어포털대한민국 전자정부대한민국 국회한국방송공사about korea and information korea브리태니커 백과사전(한국편)론리플래닛의 정보(한국편)CIA의 세계 정보(한국편)마리암 부디아 (Mariam Budia),『한국: 하늘이 내린 한 폭의 그림』, 서울: 트랜스라틴 19호 (2012년 3월)대한민국ehehehehehehehehehehehehehehWorldCat132441370n791268020000 0001 2308 81034078029-6026373548cb11863345f(데이터)00573706ge128495