Why do I get negative height?Negative sign of accelerationCan you help me solve a difficult kinematics problem?A ball is dropped from the roof of a building. How fast is it moving after 4.9 seconds? (Absolute value)Height of buildingKinematic Problem, two balls thrown down from building at different times, when will they meet and what distance will they hit at?Calculating initial velocities given trajectory parabolaMotion of tennis ball bouncingConceptually, why is acceleration due to gravity always negative?Does the acceleration due of gravity taken positive or negative matters?How to solve this projectile motion physics problem in a book I'm studying?

If human space travel is limited by the G force vulnerability, is there a way to counter G forces?

Is it possible to run Internet Explorer on OS X El Capitan?

Modeling an IP Address

I'm flying to France today and my passport expires in less than 2 months

Did Shadowfax go to Valinor?

What is the intuition behind short exact sequences of groups; in particular, what is the intuition behind group extensions?

Is it canonical bit space?

How to show the equivalence between the regularized regression and their constraint formulas using KKT

I Accidentally Deleted a Stock Terminal Theme

How can I fix/modify my tub/shower combo so the water comes out of the showerhead?

Took a trip to a parallel universe, need help deciphering

I would say: "You are another teacher", but she is a woman and I am a man

Memorizing the Keyboard

What to put in ESTA if staying in US for a few days before going on to Canada

Is it legal for company to use my work email to pretend I still work there?

How can saying a song's name be a copyright violation?

A reference to a well-known characterization of scattered compact spaces

Arrow those variables!

Can a rocket refuel on Mars from water?

How to take photos in burst mode, without vibration?

How do conventional missiles fly?

Why is it a bad idea to hire a hitman to eliminate most corrupt politicians?

Intersection of two sorted vectors in C++

What is the word for reserving something for yourself before others do?



Why do I get negative height?


Negative sign of accelerationCan you help me solve a difficult kinematics problem?A ball is dropped from the roof of a building. How fast is it moving after 4.9 seconds? (Absolute value)Height of buildingKinematic Problem, two balls thrown down from building at different times, when will they meet and what distance will they hit at?Calculating initial velocities given trajectory parabolaMotion of tennis ball bouncingConceptually, why is acceleration due to gravity always negative?Does the acceleration due of gravity taken positive or negative matters?How to solve this projectile motion physics problem in a book I'm studying?













5












$begingroup$


A baseball is thrown from the roof $50.1^circ$ above the horizontal. The initial velocity is $11.5 mathrmm/s$.



I'm trying to find how high the ball goes.
I choose positive direction upwards.



$$
H = frac12g v_0y^2
$$



But I get a negative answer since $g$ is negative. Is $g$ an absolute value when working with energy?










share|cite|improve this question









New contributor




user644361 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 3




    $begingroup$
    How did you come up with that equation?
    $endgroup$
    – JMac
    2 days ago










  • $begingroup$
    @JMac I got it from: $K_1 + U_1 = K_2 + U_2$.
    $endgroup$
    – user644361
    2 days ago















5












$begingroup$


A baseball is thrown from the roof $50.1^circ$ above the horizontal. The initial velocity is $11.5 mathrmm/s$.



I'm trying to find how high the ball goes.
I choose positive direction upwards.



$$
H = frac12g v_0y^2
$$



But I get a negative answer since $g$ is negative. Is $g$ an absolute value when working with energy?










share|cite|improve this question









New contributor




user644361 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 3




    $begingroup$
    How did you come up with that equation?
    $endgroup$
    – JMac
    2 days ago










  • $begingroup$
    @JMac I got it from: $K_1 + U_1 = K_2 + U_2$.
    $endgroup$
    – user644361
    2 days ago













5












5








5





$begingroup$


A baseball is thrown from the roof $50.1^circ$ above the horizontal. The initial velocity is $11.5 mathrmm/s$.



I'm trying to find how high the ball goes.
I choose positive direction upwards.



$$
H = frac12g v_0y^2
$$



But I get a negative answer since $g$ is negative. Is $g$ an absolute value when working with energy?










share|cite|improve this question









New contributor




user644361 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




A baseball is thrown from the roof $50.1^circ$ above the horizontal. The initial velocity is $11.5 mathrmm/s$.



I'm trying to find how high the ball goes.
I choose positive direction upwards.



$$
H = frac12g v_0y^2
$$



But I get a negative answer since $g$ is negative. Is $g$ an absolute value when working with energy?







homework-and-exercises newtonian-mechanics energy-conservation coordinate-systems projectile






share|cite|improve this question









New contributor




user644361 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




user644361 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 2 days ago









Qmechanic

107k121991237




107k121991237






New contributor




user644361 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 days ago









user644361user644361

3014




3014




New contributor




user644361 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





user644361 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






user644361 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 3




    $begingroup$
    How did you come up with that equation?
    $endgroup$
    – JMac
    2 days ago










  • $begingroup$
    @JMac I got it from: $K_1 + U_1 = K_2 + U_2$.
    $endgroup$
    – user644361
    2 days ago












  • 3




    $begingroup$
    How did you come up with that equation?
    $endgroup$
    – JMac
    2 days ago










  • $begingroup$
    @JMac I got it from: $K_1 + U_1 = K_2 + U_2$.
    $endgroup$
    – user644361
    2 days ago







3




3




$begingroup$
How did you come up with that equation?
$endgroup$
– JMac
2 days ago




$begingroup$
How did you come up with that equation?
$endgroup$
– JMac
2 days ago












$begingroup$
@JMac I got it from: $K_1 + U_1 = K_2 + U_2$.
$endgroup$
– user644361
2 days ago




$begingroup$
@JMac I got it from: $K_1 + U_1 = K_2 + U_2$.
$endgroup$
– user644361
2 days ago










5 Answers
5






active

oldest

votes


















17












$begingroup$

$g$ is always positive. The negative sign you might usually see comes from defining down as negative, but the value of $g$ is always positive. This is why you don't ever see absolute value signs and why your equation is actually correct.



To add more detail, the value of $g$ is just the magnitude of acceleration due to gravity near Earth's surface. It is given by $$g=fracGMR^2$$
where $M$ and $R$ are the mass and radius of the earth respectively, and $G$ is a constant. All of these values are positive, so $g$ is also positive.






share|cite|improve this answer









$endgroup$








  • 9




    $begingroup$
    While I agree with this answer, I would like to point out that this is a result of convention (in particular the convention to define $g$ as above) and not a fundamental mathematical truth. If you were to define $g$ differently, you'd get a different answer. Of course this is always true, but it's important to point out here because there is a alternate definition of $g$ that makes enough sense to cause this question to be asked.
    $endgroup$
    – DreamConspiracy
    2 days ago






  • 2




    $begingroup$
    @DreamConspiracy I suppose this is true, if you no longer want to define $g$ to be the magnitude of the acceleration.
    $endgroup$
    – Aaron Stevens
    2 days ago










  • $begingroup$
    yes. The only reason I even mention this is because I have seen people do it this way (and in some cases it very well might be convenient), and that this is not necessarily wrong
    $endgroup$
    – DreamConspiracy
    2 days ago


















5












$begingroup$

$g$ should always be positive. It is the magnitude of the gravitational field strength. If you choose vertical up as positive $y$, then the gravitational field (a vector) will be $-ghatj$. The gravitational potential energy change within a small vertical range will be
$$Delta U_g=mgDelta y$$
where $g$ is reasonably constant within the $Delta y$ range. For example if a 2 kg object is moved near the surface of the earth from $y_a= 2$ m to $y_b= 3$ m,
$$Delta U_g=mg(y_b-y_a)=19.6~mathrmJ.$$
If it is moved from $y_b$ to $y_a$
$$Delta U_g=mg(y_a-y_b)=-19.6~mathrmJ.$$






share|cite|improve this answer









$endgroup$




















    4












    $begingroup$

    The first issue is that it's thrown at an angle.



    As the question seems to assumes no air friction, the part of the velocity we care about for the answer is its vertical component (11.5 x sin 50.1 = 8.82 m/s). The horizontal component says how far it will travel horizontally, which we aren't being asked about.



    So the question is the same as asking about a ball thrown vertically upward at 8.82 m/s.



    Next, we have to make a choice which direction we call "positive". That is a completely free choice.



    • If we call "up" the + direction , then the ball starts with positive velocity +8.82 (because its initial velocity is in the direction we defined as +), and has an acceleration in the negative direction, with acceleration -9.8 (because gravity acts in the downward direction we defined as -).

    • If we call "down" the + direction , then the ball starts with negative velocity -8.82 (because its initial velocity is in the direction we defined as -), and has an acceleration in the positive direction, with acceleration +9.8 (because gravity acts in the upward direction we defined as +).

    We can choose either of these, and the answer will be the same.



    If we define "up" as the positive direction, which is probably the usual way most people would do it, then the ball starts with a positive velocity, and experiences a constant acceleration (deceleration) in the negative direction. (See how we use positive and negative directions and +/-g?). The ball reaches its highest point when its velocity reaches zero, because after that it starts to move downward again in a negative direction. We want to know how far its travelled in that time.



    We can solve this using equations of motion, or energy - the answer will be the same. I'll show both methods.



    Using equations of motion



    There are different ways to write the equation when we know start velocity (v1 which is 8.82), end velocity (v2 which is zero), and acceleration (a which is -9.8), and want to know distance (s). One easy way is to work out the time (t) it takes:



    v2 = v1 + at



    => 0 = 8.82 + (-9.8) t



    => t = 8.82 / 9.8 = 0.9 seconds



    How far did it travel?



    s = (v1 + v2) t / 2



    s = (8.82 + 0) x 0.9 / 2



    s = 8.82 x 0.9 /2 = 3.969



    The ball travelled 3.969 metres upwards at its highest point.



    Using energy



    Initial K.E. is m.v12/2 = m.8.822/2 = 38.89 m



    Final K.E. = 0 (when the ball is at its highest point, all the K.E. has been transformed into P.E., and it has no vertical velocity.)



    The gain in P.E. by raising a ball of weight 'm' by height 'h' is mgh.



    But we don't have to consider directions of motion really. We only have to consider energy. It starts with some KE and ends with none. It starts with some PE and ends with a higher gravitational PE because its position is higher within a gravitational field (however it got there)



    => mgh = 38.89m



    => g.h = 38.89



    => 9.8.h = 38.89



    => h = 38.89 / 9.8 = 3.969



    Same answer - the ball rises by 3.969 metres at its highest point.






    share|cite|improve this answer











    $endgroup$




















      3












      $begingroup$

      I assume you got to this equation by setting the potential energy at the highest point $E_textpot=mgH$ equal to the vertical kinetic energy $E_textkin=fracmv_y^22$. In the formula for the potential energy, $g$ is to be taken positive, as otherwise this would yield a negative potential energy (which is possible, but not correct in this context).




      If you want to see that consistent, derive the formula for the potential energy yourself. In that case $F_textgrav=mg$ since you take $g$ to be negative, and we are only considering the $z$ component. Then, since for lifting something up we need to apply a force opposite the gravitational force, we have
      $$E_textpot = int_0^h -F_textgrav ds = int_0^h -mg,ds = left. -mgsright|_s=0^h = -mgh$$






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        I just don't get it how you can willy-nilly change the direction of something in physics when you've defined a positive direction.
        $endgroup$
        – user644361
        2 days ago










      • $begingroup$
        The formula doesn't have absolute value signs for g either, $|g|$
        $endgroup$
        – user644361
        2 days ago










      • $begingroup$
        @user644361 Which has higher potential energy, the ball at h=1m or the ball at h=10m?
        $endgroup$
        – PM 2Ring
        2 days ago






      • 5




        $begingroup$
        You don't change it willy-nilly. This is why you should know where formulas come from. If you look at the derivation of the $mgh$ formula, you see that $g$ is taken to be positive, as is usually convention.
        $endgroup$
        – noah
        2 days ago






      • 2




        $begingroup$
        The work done by a change in potential energy is $W = -Delta U$. Note the minus sign in that equation. You have another minus sign because weight acts in the negative $y$ direction, in your sign convention. You can't do mechanics by just picking equations at random from a textbook and hoping everything will work out right - you have to understand what you are doing.
        $endgroup$
        – alephzero
        2 days ago


















      2












      $begingroup$

      The signs work out correctly as long as you are careful.



      If an object accelerates at a constant acceleration $a$ over a distance $s$ then the work done on the object is force times distance. But we have $F=ma$, so the work done on the object is $mas$. So if $K_1$ and $K_2$ are the kinetic energy of the object at the start and at the end of the period, then



      $K_2-K_1=mas$



      In the case of ballistic motion in a vertical direction, $K_1=frac 1 2 mv^2$ where $v$ is the initial velocity of the object. If the object reaches a maximum height of $h$ then $K_2=0$ when $s=h$, so we have



      $-frac1 2 mv^2 = mah$



      Substituting $a=-g$ and we have



      $-frac1 2 mv^2 = -mgh \ Rightarrow h = frac v^2 2g $






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "151"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: false,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: null,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );






        user644361 is a new contributor. Be nice, and check out our Code of Conduct.









        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470068%2fwhy-do-i-get-negative-height%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        5 Answers
        5






        active

        oldest

        votes








        5 Answers
        5






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        17












        $begingroup$

        $g$ is always positive. The negative sign you might usually see comes from defining down as negative, but the value of $g$ is always positive. This is why you don't ever see absolute value signs and why your equation is actually correct.



        To add more detail, the value of $g$ is just the magnitude of acceleration due to gravity near Earth's surface. It is given by $$g=fracGMR^2$$
        where $M$ and $R$ are the mass and radius of the earth respectively, and $G$ is a constant. All of these values are positive, so $g$ is also positive.






        share|cite|improve this answer









        $endgroup$








        • 9




          $begingroup$
          While I agree with this answer, I would like to point out that this is a result of convention (in particular the convention to define $g$ as above) and not a fundamental mathematical truth. If you were to define $g$ differently, you'd get a different answer. Of course this is always true, but it's important to point out here because there is a alternate definition of $g$ that makes enough sense to cause this question to be asked.
          $endgroup$
          – DreamConspiracy
          2 days ago






        • 2




          $begingroup$
          @DreamConspiracy I suppose this is true, if you no longer want to define $g$ to be the magnitude of the acceleration.
          $endgroup$
          – Aaron Stevens
          2 days ago










        • $begingroup$
          yes. The only reason I even mention this is because I have seen people do it this way (and in some cases it very well might be convenient), and that this is not necessarily wrong
          $endgroup$
          – DreamConspiracy
          2 days ago















        17












        $begingroup$

        $g$ is always positive. The negative sign you might usually see comes from defining down as negative, but the value of $g$ is always positive. This is why you don't ever see absolute value signs and why your equation is actually correct.



        To add more detail, the value of $g$ is just the magnitude of acceleration due to gravity near Earth's surface. It is given by $$g=fracGMR^2$$
        where $M$ and $R$ are the mass and radius of the earth respectively, and $G$ is a constant. All of these values are positive, so $g$ is also positive.






        share|cite|improve this answer









        $endgroup$








        • 9




          $begingroup$
          While I agree with this answer, I would like to point out that this is a result of convention (in particular the convention to define $g$ as above) and not a fundamental mathematical truth. If you were to define $g$ differently, you'd get a different answer. Of course this is always true, but it's important to point out here because there is a alternate definition of $g$ that makes enough sense to cause this question to be asked.
          $endgroup$
          – DreamConspiracy
          2 days ago






        • 2




          $begingroup$
          @DreamConspiracy I suppose this is true, if you no longer want to define $g$ to be the magnitude of the acceleration.
          $endgroup$
          – Aaron Stevens
          2 days ago










        • $begingroup$
          yes. The only reason I even mention this is because I have seen people do it this way (and in some cases it very well might be convenient), and that this is not necessarily wrong
          $endgroup$
          – DreamConspiracy
          2 days ago













        17












        17








        17





        $begingroup$

        $g$ is always positive. The negative sign you might usually see comes from defining down as negative, but the value of $g$ is always positive. This is why you don't ever see absolute value signs and why your equation is actually correct.



        To add more detail, the value of $g$ is just the magnitude of acceleration due to gravity near Earth's surface. It is given by $$g=fracGMR^2$$
        where $M$ and $R$ are the mass and radius of the earth respectively, and $G$ is a constant. All of these values are positive, so $g$ is also positive.






        share|cite|improve this answer









        $endgroup$



        $g$ is always positive. The negative sign you might usually see comes from defining down as negative, but the value of $g$ is always positive. This is why you don't ever see absolute value signs and why your equation is actually correct.



        To add more detail, the value of $g$ is just the magnitude of acceleration due to gravity near Earth's surface. It is given by $$g=fracGMR^2$$
        where $M$ and $R$ are the mass and radius of the earth respectively, and $G$ is a constant. All of these values are positive, so $g$ is also positive.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 2 days ago









        Aaron StevensAaron Stevens

        14.2k42252




        14.2k42252







        • 9




          $begingroup$
          While I agree with this answer, I would like to point out that this is a result of convention (in particular the convention to define $g$ as above) and not a fundamental mathematical truth. If you were to define $g$ differently, you'd get a different answer. Of course this is always true, but it's important to point out here because there is a alternate definition of $g$ that makes enough sense to cause this question to be asked.
          $endgroup$
          – DreamConspiracy
          2 days ago






        • 2




          $begingroup$
          @DreamConspiracy I suppose this is true, if you no longer want to define $g$ to be the magnitude of the acceleration.
          $endgroup$
          – Aaron Stevens
          2 days ago










        • $begingroup$
          yes. The only reason I even mention this is because I have seen people do it this way (and in some cases it very well might be convenient), and that this is not necessarily wrong
          $endgroup$
          – DreamConspiracy
          2 days ago












        • 9




          $begingroup$
          While I agree with this answer, I would like to point out that this is a result of convention (in particular the convention to define $g$ as above) and not a fundamental mathematical truth. If you were to define $g$ differently, you'd get a different answer. Of course this is always true, but it's important to point out here because there is a alternate definition of $g$ that makes enough sense to cause this question to be asked.
          $endgroup$
          – DreamConspiracy
          2 days ago






        • 2




          $begingroup$
          @DreamConspiracy I suppose this is true, if you no longer want to define $g$ to be the magnitude of the acceleration.
          $endgroup$
          – Aaron Stevens
          2 days ago










        • $begingroup$
          yes. The only reason I even mention this is because I have seen people do it this way (and in some cases it very well might be convenient), and that this is not necessarily wrong
          $endgroup$
          – DreamConspiracy
          2 days ago







        9




        9




        $begingroup$
        While I agree with this answer, I would like to point out that this is a result of convention (in particular the convention to define $g$ as above) and not a fundamental mathematical truth. If you were to define $g$ differently, you'd get a different answer. Of course this is always true, but it's important to point out here because there is a alternate definition of $g$ that makes enough sense to cause this question to be asked.
        $endgroup$
        – DreamConspiracy
        2 days ago




        $begingroup$
        While I agree with this answer, I would like to point out that this is a result of convention (in particular the convention to define $g$ as above) and not a fundamental mathematical truth. If you were to define $g$ differently, you'd get a different answer. Of course this is always true, but it's important to point out here because there is a alternate definition of $g$ that makes enough sense to cause this question to be asked.
        $endgroup$
        – DreamConspiracy
        2 days ago




        2




        2




        $begingroup$
        @DreamConspiracy I suppose this is true, if you no longer want to define $g$ to be the magnitude of the acceleration.
        $endgroup$
        – Aaron Stevens
        2 days ago




        $begingroup$
        @DreamConspiracy I suppose this is true, if you no longer want to define $g$ to be the magnitude of the acceleration.
        $endgroup$
        – Aaron Stevens
        2 days ago












        $begingroup$
        yes. The only reason I even mention this is because I have seen people do it this way (and in some cases it very well might be convenient), and that this is not necessarily wrong
        $endgroup$
        – DreamConspiracy
        2 days ago




        $begingroup$
        yes. The only reason I even mention this is because I have seen people do it this way (and in some cases it very well might be convenient), and that this is not necessarily wrong
        $endgroup$
        – DreamConspiracy
        2 days ago











        5












        $begingroup$

        $g$ should always be positive. It is the magnitude of the gravitational field strength. If you choose vertical up as positive $y$, then the gravitational field (a vector) will be $-ghatj$. The gravitational potential energy change within a small vertical range will be
        $$Delta U_g=mgDelta y$$
        where $g$ is reasonably constant within the $Delta y$ range. For example if a 2 kg object is moved near the surface of the earth from $y_a= 2$ m to $y_b= 3$ m,
        $$Delta U_g=mg(y_b-y_a)=19.6~mathrmJ.$$
        If it is moved from $y_b$ to $y_a$
        $$Delta U_g=mg(y_a-y_b)=-19.6~mathrmJ.$$






        share|cite|improve this answer









        $endgroup$

















          5












          $begingroup$

          $g$ should always be positive. It is the magnitude of the gravitational field strength. If you choose vertical up as positive $y$, then the gravitational field (a vector) will be $-ghatj$. The gravitational potential energy change within a small vertical range will be
          $$Delta U_g=mgDelta y$$
          where $g$ is reasonably constant within the $Delta y$ range. For example if a 2 kg object is moved near the surface of the earth from $y_a= 2$ m to $y_b= 3$ m,
          $$Delta U_g=mg(y_b-y_a)=19.6~mathrmJ.$$
          If it is moved from $y_b$ to $y_a$
          $$Delta U_g=mg(y_a-y_b)=-19.6~mathrmJ.$$






          share|cite|improve this answer









          $endgroup$















            5












            5








            5





            $begingroup$

            $g$ should always be positive. It is the magnitude of the gravitational field strength. If you choose vertical up as positive $y$, then the gravitational field (a vector) will be $-ghatj$. The gravitational potential energy change within a small vertical range will be
            $$Delta U_g=mgDelta y$$
            where $g$ is reasonably constant within the $Delta y$ range. For example if a 2 kg object is moved near the surface of the earth from $y_a= 2$ m to $y_b= 3$ m,
            $$Delta U_g=mg(y_b-y_a)=19.6~mathrmJ.$$
            If it is moved from $y_b$ to $y_a$
            $$Delta U_g=mg(y_a-y_b)=-19.6~mathrmJ.$$






            share|cite|improve this answer









            $endgroup$



            $g$ should always be positive. It is the magnitude of the gravitational field strength. If you choose vertical up as positive $y$, then the gravitational field (a vector) will be $-ghatj$. The gravitational potential energy change within a small vertical range will be
            $$Delta U_g=mgDelta y$$
            where $g$ is reasonably constant within the $Delta y$ range. For example if a 2 kg object is moved near the surface of the earth from $y_a= 2$ m to $y_b= 3$ m,
            $$Delta U_g=mg(y_b-y_a)=19.6~mathrmJ.$$
            If it is moved from $y_b$ to $y_a$
            $$Delta U_g=mg(y_a-y_b)=-19.6~mathrmJ.$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 2 days ago









            Bill NBill N

            9,86912241




            9,86912241





















                4












                $begingroup$

                The first issue is that it's thrown at an angle.



                As the question seems to assumes no air friction, the part of the velocity we care about for the answer is its vertical component (11.5 x sin 50.1 = 8.82 m/s). The horizontal component says how far it will travel horizontally, which we aren't being asked about.



                So the question is the same as asking about a ball thrown vertically upward at 8.82 m/s.



                Next, we have to make a choice which direction we call "positive". That is a completely free choice.



                • If we call "up" the + direction , then the ball starts with positive velocity +8.82 (because its initial velocity is in the direction we defined as +), and has an acceleration in the negative direction, with acceleration -9.8 (because gravity acts in the downward direction we defined as -).

                • If we call "down" the + direction , then the ball starts with negative velocity -8.82 (because its initial velocity is in the direction we defined as -), and has an acceleration in the positive direction, with acceleration +9.8 (because gravity acts in the upward direction we defined as +).

                We can choose either of these, and the answer will be the same.



                If we define "up" as the positive direction, which is probably the usual way most people would do it, then the ball starts with a positive velocity, and experiences a constant acceleration (deceleration) in the negative direction. (See how we use positive and negative directions and +/-g?). The ball reaches its highest point when its velocity reaches zero, because after that it starts to move downward again in a negative direction. We want to know how far its travelled in that time.



                We can solve this using equations of motion, or energy - the answer will be the same. I'll show both methods.



                Using equations of motion



                There are different ways to write the equation when we know start velocity (v1 which is 8.82), end velocity (v2 which is zero), and acceleration (a which is -9.8), and want to know distance (s). One easy way is to work out the time (t) it takes:



                v2 = v1 + at



                => 0 = 8.82 + (-9.8) t



                => t = 8.82 / 9.8 = 0.9 seconds



                How far did it travel?



                s = (v1 + v2) t / 2



                s = (8.82 + 0) x 0.9 / 2



                s = 8.82 x 0.9 /2 = 3.969



                The ball travelled 3.969 metres upwards at its highest point.



                Using energy



                Initial K.E. is m.v12/2 = m.8.822/2 = 38.89 m



                Final K.E. = 0 (when the ball is at its highest point, all the K.E. has been transformed into P.E., and it has no vertical velocity.)



                The gain in P.E. by raising a ball of weight 'm' by height 'h' is mgh.



                But we don't have to consider directions of motion really. We only have to consider energy. It starts with some KE and ends with none. It starts with some PE and ends with a higher gravitational PE because its position is higher within a gravitational field (however it got there)



                => mgh = 38.89m



                => g.h = 38.89



                => 9.8.h = 38.89



                => h = 38.89 / 9.8 = 3.969



                Same answer - the ball rises by 3.969 metres at its highest point.






                share|cite|improve this answer











                $endgroup$

















                  4












                  $begingroup$

                  The first issue is that it's thrown at an angle.



                  As the question seems to assumes no air friction, the part of the velocity we care about for the answer is its vertical component (11.5 x sin 50.1 = 8.82 m/s). The horizontal component says how far it will travel horizontally, which we aren't being asked about.



                  So the question is the same as asking about a ball thrown vertically upward at 8.82 m/s.



                  Next, we have to make a choice which direction we call "positive". That is a completely free choice.



                  • If we call "up" the + direction , then the ball starts with positive velocity +8.82 (because its initial velocity is in the direction we defined as +), and has an acceleration in the negative direction, with acceleration -9.8 (because gravity acts in the downward direction we defined as -).

                  • If we call "down" the + direction , then the ball starts with negative velocity -8.82 (because its initial velocity is in the direction we defined as -), and has an acceleration in the positive direction, with acceleration +9.8 (because gravity acts in the upward direction we defined as +).

                  We can choose either of these, and the answer will be the same.



                  If we define "up" as the positive direction, which is probably the usual way most people would do it, then the ball starts with a positive velocity, and experiences a constant acceleration (deceleration) in the negative direction. (See how we use positive and negative directions and +/-g?). The ball reaches its highest point when its velocity reaches zero, because after that it starts to move downward again in a negative direction. We want to know how far its travelled in that time.



                  We can solve this using equations of motion, or energy - the answer will be the same. I'll show both methods.



                  Using equations of motion



                  There are different ways to write the equation when we know start velocity (v1 which is 8.82), end velocity (v2 which is zero), and acceleration (a which is -9.8), and want to know distance (s). One easy way is to work out the time (t) it takes:



                  v2 = v1 + at



                  => 0 = 8.82 + (-9.8) t



                  => t = 8.82 / 9.8 = 0.9 seconds



                  How far did it travel?



                  s = (v1 + v2) t / 2



                  s = (8.82 + 0) x 0.9 / 2



                  s = 8.82 x 0.9 /2 = 3.969



                  The ball travelled 3.969 metres upwards at its highest point.



                  Using energy



                  Initial K.E. is m.v12/2 = m.8.822/2 = 38.89 m



                  Final K.E. = 0 (when the ball is at its highest point, all the K.E. has been transformed into P.E., and it has no vertical velocity.)



                  The gain in P.E. by raising a ball of weight 'm' by height 'h' is mgh.



                  But we don't have to consider directions of motion really. We only have to consider energy. It starts with some KE and ends with none. It starts with some PE and ends with a higher gravitational PE because its position is higher within a gravitational field (however it got there)



                  => mgh = 38.89m



                  => g.h = 38.89



                  => 9.8.h = 38.89



                  => h = 38.89 / 9.8 = 3.969



                  Same answer - the ball rises by 3.969 metres at its highest point.






                  share|cite|improve this answer











                  $endgroup$















                    4












                    4








                    4





                    $begingroup$

                    The first issue is that it's thrown at an angle.



                    As the question seems to assumes no air friction, the part of the velocity we care about for the answer is its vertical component (11.5 x sin 50.1 = 8.82 m/s). The horizontal component says how far it will travel horizontally, which we aren't being asked about.



                    So the question is the same as asking about a ball thrown vertically upward at 8.82 m/s.



                    Next, we have to make a choice which direction we call "positive". That is a completely free choice.



                    • If we call "up" the + direction , then the ball starts with positive velocity +8.82 (because its initial velocity is in the direction we defined as +), and has an acceleration in the negative direction, with acceleration -9.8 (because gravity acts in the downward direction we defined as -).

                    • If we call "down" the + direction , then the ball starts with negative velocity -8.82 (because its initial velocity is in the direction we defined as -), and has an acceleration in the positive direction, with acceleration +9.8 (because gravity acts in the upward direction we defined as +).

                    We can choose either of these, and the answer will be the same.



                    If we define "up" as the positive direction, which is probably the usual way most people would do it, then the ball starts with a positive velocity, and experiences a constant acceleration (deceleration) in the negative direction. (See how we use positive and negative directions and +/-g?). The ball reaches its highest point when its velocity reaches zero, because after that it starts to move downward again in a negative direction. We want to know how far its travelled in that time.



                    We can solve this using equations of motion, or energy - the answer will be the same. I'll show both methods.



                    Using equations of motion



                    There are different ways to write the equation when we know start velocity (v1 which is 8.82), end velocity (v2 which is zero), and acceleration (a which is -9.8), and want to know distance (s). One easy way is to work out the time (t) it takes:



                    v2 = v1 + at



                    => 0 = 8.82 + (-9.8) t



                    => t = 8.82 / 9.8 = 0.9 seconds



                    How far did it travel?



                    s = (v1 + v2) t / 2



                    s = (8.82 + 0) x 0.9 / 2



                    s = 8.82 x 0.9 /2 = 3.969



                    The ball travelled 3.969 metres upwards at its highest point.



                    Using energy



                    Initial K.E. is m.v12/2 = m.8.822/2 = 38.89 m



                    Final K.E. = 0 (when the ball is at its highest point, all the K.E. has been transformed into P.E., and it has no vertical velocity.)



                    The gain in P.E. by raising a ball of weight 'm' by height 'h' is mgh.



                    But we don't have to consider directions of motion really. We only have to consider energy. It starts with some KE and ends with none. It starts with some PE and ends with a higher gravitational PE because its position is higher within a gravitational field (however it got there)



                    => mgh = 38.89m



                    => g.h = 38.89



                    => 9.8.h = 38.89



                    => h = 38.89 / 9.8 = 3.969



                    Same answer - the ball rises by 3.969 metres at its highest point.






                    share|cite|improve this answer











                    $endgroup$



                    The first issue is that it's thrown at an angle.



                    As the question seems to assumes no air friction, the part of the velocity we care about for the answer is its vertical component (11.5 x sin 50.1 = 8.82 m/s). The horizontal component says how far it will travel horizontally, which we aren't being asked about.



                    So the question is the same as asking about a ball thrown vertically upward at 8.82 m/s.



                    Next, we have to make a choice which direction we call "positive". That is a completely free choice.



                    • If we call "up" the + direction , then the ball starts with positive velocity +8.82 (because its initial velocity is in the direction we defined as +), and has an acceleration in the negative direction, with acceleration -9.8 (because gravity acts in the downward direction we defined as -).

                    • If we call "down" the + direction , then the ball starts with negative velocity -8.82 (because its initial velocity is in the direction we defined as -), and has an acceleration in the positive direction, with acceleration +9.8 (because gravity acts in the upward direction we defined as +).

                    We can choose either of these, and the answer will be the same.



                    If we define "up" as the positive direction, which is probably the usual way most people would do it, then the ball starts with a positive velocity, and experiences a constant acceleration (deceleration) in the negative direction. (See how we use positive and negative directions and +/-g?). The ball reaches its highest point when its velocity reaches zero, because after that it starts to move downward again in a negative direction. We want to know how far its travelled in that time.



                    We can solve this using equations of motion, or energy - the answer will be the same. I'll show both methods.



                    Using equations of motion



                    There are different ways to write the equation when we know start velocity (v1 which is 8.82), end velocity (v2 which is zero), and acceleration (a which is -9.8), and want to know distance (s). One easy way is to work out the time (t) it takes:



                    v2 = v1 + at



                    => 0 = 8.82 + (-9.8) t



                    => t = 8.82 / 9.8 = 0.9 seconds



                    How far did it travel?



                    s = (v1 + v2) t / 2



                    s = (8.82 + 0) x 0.9 / 2



                    s = 8.82 x 0.9 /2 = 3.969



                    The ball travelled 3.969 metres upwards at its highest point.



                    Using energy



                    Initial K.E. is m.v12/2 = m.8.822/2 = 38.89 m



                    Final K.E. = 0 (when the ball is at its highest point, all the K.E. has been transformed into P.E., and it has no vertical velocity.)



                    The gain in P.E. by raising a ball of weight 'm' by height 'h' is mgh.



                    But we don't have to consider directions of motion really. We only have to consider energy. It starts with some KE and ends with none. It starts with some PE and ends with a higher gravitational PE because its position is higher within a gravitational field (however it got there)



                    => mgh = 38.89m



                    => g.h = 38.89



                    => 9.8.h = 38.89



                    => h = 38.89 / 9.8 = 3.969



                    Same answer - the ball rises by 3.969 metres at its highest point.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 2 days ago

























                    answered 2 days ago









                    StilezStilez

                    1,468413




                    1,468413





















                        3












                        $begingroup$

                        I assume you got to this equation by setting the potential energy at the highest point $E_textpot=mgH$ equal to the vertical kinetic energy $E_textkin=fracmv_y^22$. In the formula for the potential energy, $g$ is to be taken positive, as otherwise this would yield a negative potential energy (which is possible, but not correct in this context).




                        If you want to see that consistent, derive the formula for the potential energy yourself. In that case $F_textgrav=mg$ since you take $g$ to be negative, and we are only considering the $z$ component. Then, since for lifting something up we need to apply a force opposite the gravitational force, we have
                        $$E_textpot = int_0^h -F_textgrav ds = int_0^h -mg,ds = left. -mgsright|_s=0^h = -mgh$$






                        share|cite|improve this answer











                        $endgroup$












                        • $begingroup$
                          I just don't get it how you can willy-nilly change the direction of something in physics when you've defined a positive direction.
                          $endgroup$
                          – user644361
                          2 days ago










                        • $begingroup$
                          The formula doesn't have absolute value signs for g either, $|g|$
                          $endgroup$
                          – user644361
                          2 days ago










                        • $begingroup$
                          @user644361 Which has higher potential energy, the ball at h=1m or the ball at h=10m?
                          $endgroup$
                          – PM 2Ring
                          2 days ago






                        • 5




                          $begingroup$
                          You don't change it willy-nilly. This is why you should know where formulas come from. If you look at the derivation of the $mgh$ formula, you see that $g$ is taken to be positive, as is usually convention.
                          $endgroup$
                          – noah
                          2 days ago






                        • 2




                          $begingroup$
                          The work done by a change in potential energy is $W = -Delta U$. Note the minus sign in that equation. You have another minus sign because weight acts in the negative $y$ direction, in your sign convention. You can't do mechanics by just picking equations at random from a textbook and hoping everything will work out right - you have to understand what you are doing.
                          $endgroup$
                          – alephzero
                          2 days ago















                        3












                        $begingroup$

                        I assume you got to this equation by setting the potential energy at the highest point $E_textpot=mgH$ equal to the vertical kinetic energy $E_textkin=fracmv_y^22$. In the formula for the potential energy, $g$ is to be taken positive, as otherwise this would yield a negative potential energy (which is possible, but not correct in this context).




                        If you want to see that consistent, derive the formula for the potential energy yourself. In that case $F_textgrav=mg$ since you take $g$ to be negative, and we are only considering the $z$ component. Then, since for lifting something up we need to apply a force opposite the gravitational force, we have
                        $$E_textpot = int_0^h -F_textgrav ds = int_0^h -mg,ds = left. -mgsright|_s=0^h = -mgh$$






                        share|cite|improve this answer











                        $endgroup$












                        • $begingroup$
                          I just don't get it how you can willy-nilly change the direction of something in physics when you've defined a positive direction.
                          $endgroup$
                          – user644361
                          2 days ago










                        • $begingroup$
                          The formula doesn't have absolute value signs for g either, $|g|$
                          $endgroup$
                          – user644361
                          2 days ago










                        • $begingroup$
                          @user644361 Which has higher potential energy, the ball at h=1m or the ball at h=10m?
                          $endgroup$
                          – PM 2Ring
                          2 days ago






                        • 5




                          $begingroup$
                          You don't change it willy-nilly. This is why you should know where formulas come from. If you look at the derivation of the $mgh$ formula, you see that $g$ is taken to be positive, as is usually convention.
                          $endgroup$
                          – noah
                          2 days ago






                        • 2




                          $begingroup$
                          The work done by a change in potential energy is $W = -Delta U$. Note the minus sign in that equation. You have another minus sign because weight acts in the negative $y$ direction, in your sign convention. You can't do mechanics by just picking equations at random from a textbook and hoping everything will work out right - you have to understand what you are doing.
                          $endgroup$
                          – alephzero
                          2 days ago













                        3












                        3








                        3





                        $begingroup$

                        I assume you got to this equation by setting the potential energy at the highest point $E_textpot=mgH$ equal to the vertical kinetic energy $E_textkin=fracmv_y^22$. In the formula for the potential energy, $g$ is to be taken positive, as otherwise this would yield a negative potential energy (which is possible, but not correct in this context).




                        If you want to see that consistent, derive the formula for the potential energy yourself. In that case $F_textgrav=mg$ since you take $g$ to be negative, and we are only considering the $z$ component. Then, since for lifting something up we need to apply a force opposite the gravitational force, we have
                        $$E_textpot = int_0^h -F_textgrav ds = int_0^h -mg,ds = left. -mgsright|_s=0^h = -mgh$$






                        share|cite|improve this answer











                        $endgroup$



                        I assume you got to this equation by setting the potential energy at the highest point $E_textpot=mgH$ equal to the vertical kinetic energy $E_textkin=fracmv_y^22$. In the formula for the potential energy, $g$ is to be taken positive, as otherwise this would yield a negative potential energy (which is possible, but not correct in this context).




                        If you want to see that consistent, derive the formula for the potential energy yourself. In that case $F_textgrav=mg$ since you take $g$ to be negative, and we are only considering the $z$ component. Then, since for lifting something up we need to apply a force opposite the gravitational force, we have
                        $$E_textpot = int_0^h -F_textgrav ds = int_0^h -mg,ds = left. -mgsright|_s=0^h = -mgh$$







                        share|cite|improve this answer














                        share|cite|improve this answer



                        share|cite|improve this answer








                        edited 2 days ago

























                        answered 2 days ago









                        noahnoah

                        4,13311226




                        4,13311226











                        • $begingroup$
                          I just don't get it how you can willy-nilly change the direction of something in physics when you've defined a positive direction.
                          $endgroup$
                          – user644361
                          2 days ago










                        • $begingroup$
                          The formula doesn't have absolute value signs for g either, $|g|$
                          $endgroup$
                          – user644361
                          2 days ago










                        • $begingroup$
                          @user644361 Which has higher potential energy, the ball at h=1m or the ball at h=10m?
                          $endgroup$
                          – PM 2Ring
                          2 days ago






                        • 5




                          $begingroup$
                          You don't change it willy-nilly. This is why you should know where formulas come from. If you look at the derivation of the $mgh$ formula, you see that $g$ is taken to be positive, as is usually convention.
                          $endgroup$
                          – noah
                          2 days ago






                        • 2




                          $begingroup$
                          The work done by a change in potential energy is $W = -Delta U$. Note the minus sign in that equation. You have another minus sign because weight acts in the negative $y$ direction, in your sign convention. You can't do mechanics by just picking equations at random from a textbook and hoping everything will work out right - you have to understand what you are doing.
                          $endgroup$
                          – alephzero
                          2 days ago
















                        • $begingroup$
                          I just don't get it how you can willy-nilly change the direction of something in physics when you've defined a positive direction.
                          $endgroup$
                          – user644361
                          2 days ago










                        • $begingroup$
                          The formula doesn't have absolute value signs for g either, $|g|$
                          $endgroup$
                          – user644361
                          2 days ago










                        • $begingroup$
                          @user644361 Which has higher potential energy, the ball at h=1m or the ball at h=10m?
                          $endgroup$
                          – PM 2Ring
                          2 days ago






                        • 5




                          $begingroup$
                          You don't change it willy-nilly. This is why you should know where formulas come from. If you look at the derivation of the $mgh$ formula, you see that $g$ is taken to be positive, as is usually convention.
                          $endgroup$
                          – noah
                          2 days ago






                        • 2




                          $begingroup$
                          The work done by a change in potential energy is $W = -Delta U$. Note the minus sign in that equation. You have another minus sign because weight acts in the negative $y$ direction, in your sign convention. You can't do mechanics by just picking equations at random from a textbook and hoping everything will work out right - you have to understand what you are doing.
                          $endgroup$
                          – alephzero
                          2 days ago















                        $begingroup$
                        I just don't get it how you can willy-nilly change the direction of something in physics when you've defined a positive direction.
                        $endgroup$
                        – user644361
                        2 days ago




                        $begingroup$
                        I just don't get it how you can willy-nilly change the direction of something in physics when you've defined a positive direction.
                        $endgroup$
                        – user644361
                        2 days ago












                        $begingroup$
                        The formula doesn't have absolute value signs for g either, $|g|$
                        $endgroup$
                        – user644361
                        2 days ago




                        $begingroup$
                        The formula doesn't have absolute value signs for g either, $|g|$
                        $endgroup$
                        – user644361
                        2 days ago












                        $begingroup$
                        @user644361 Which has higher potential energy, the ball at h=1m or the ball at h=10m?
                        $endgroup$
                        – PM 2Ring
                        2 days ago




                        $begingroup$
                        @user644361 Which has higher potential energy, the ball at h=1m or the ball at h=10m?
                        $endgroup$
                        – PM 2Ring
                        2 days ago




                        5




                        5




                        $begingroup$
                        You don't change it willy-nilly. This is why you should know where formulas come from. If you look at the derivation of the $mgh$ formula, you see that $g$ is taken to be positive, as is usually convention.
                        $endgroup$
                        – noah
                        2 days ago




                        $begingroup$
                        You don't change it willy-nilly. This is why you should know where formulas come from. If you look at the derivation of the $mgh$ formula, you see that $g$ is taken to be positive, as is usually convention.
                        $endgroup$
                        – noah
                        2 days ago




                        2




                        2




                        $begingroup$
                        The work done by a change in potential energy is $W = -Delta U$. Note the minus sign in that equation. You have another minus sign because weight acts in the negative $y$ direction, in your sign convention. You can't do mechanics by just picking equations at random from a textbook and hoping everything will work out right - you have to understand what you are doing.
                        $endgroup$
                        – alephzero
                        2 days ago




                        $begingroup$
                        The work done by a change in potential energy is $W = -Delta U$. Note the minus sign in that equation. You have another minus sign because weight acts in the negative $y$ direction, in your sign convention. You can't do mechanics by just picking equations at random from a textbook and hoping everything will work out right - you have to understand what you are doing.
                        $endgroup$
                        – alephzero
                        2 days ago











                        2












                        $begingroup$

                        The signs work out correctly as long as you are careful.



                        If an object accelerates at a constant acceleration $a$ over a distance $s$ then the work done on the object is force times distance. But we have $F=ma$, so the work done on the object is $mas$. So if $K_1$ and $K_2$ are the kinetic energy of the object at the start and at the end of the period, then



                        $K_2-K_1=mas$



                        In the case of ballistic motion in a vertical direction, $K_1=frac 1 2 mv^2$ where $v$ is the initial velocity of the object. If the object reaches a maximum height of $h$ then $K_2=0$ when $s=h$, so we have



                        $-frac1 2 mv^2 = mah$



                        Substituting $a=-g$ and we have



                        $-frac1 2 mv^2 = -mgh \ Rightarrow h = frac v^2 2g $






                        share|cite|improve this answer









                        $endgroup$

















                          2












                          $begingroup$

                          The signs work out correctly as long as you are careful.



                          If an object accelerates at a constant acceleration $a$ over a distance $s$ then the work done on the object is force times distance. But we have $F=ma$, so the work done on the object is $mas$. So if $K_1$ and $K_2$ are the kinetic energy of the object at the start and at the end of the period, then



                          $K_2-K_1=mas$



                          In the case of ballistic motion in a vertical direction, $K_1=frac 1 2 mv^2$ where $v$ is the initial velocity of the object. If the object reaches a maximum height of $h$ then $K_2=0$ when $s=h$, so we have



                          $-frac1 2 mv^2 = mah$



                          Substituting $a=-g$ and we have



                          $-frac1 2 mv^2 = -mgh \ Rightarrow h = frac v^2 2g $






                          share|cite|improve this answer









                          $endgroup$















                            2












                            2








                            2





                            $begingroup$

                            The signs work out correctly as long as you are careful.



                            If an object accelerates at a constant acceleration $a$ over a distance $s$ then the work done on the object is force times distance. But we have $F=ma$, so the work done on the object is $mas$. So if $K_1$ and $K_2$ are the kinetic energy of the object at the start and at the end of the period, then



                            $K_2-K_1=mas$



                            In the case of ballistic motion in a vertical direction, $K_1=frac 1 2 mv^2$ where $v$ is the initial velocity of the object. If the object reaches a maximum height of $h$ then $K_2=0$ when $s=h$, so we have



                            $-frac1 2 mv^2 = mah$



                            Substituting $a=-g$ and we have



                            $-frac1 2 mv^2 = -mgh \ Rightarrow h = frac v^2 2g $






                            share|cite|improve this answer









                            $endgroup$



                            The signs work out correctly as long as you are careful.



                            If an object accelerates at a constant acceleration $a$ over a distance $s$ then the work done on the object is force times distance. But we have $F=ma$, so the work done on the object is $mas$. So if $K_1$ and $K_2$ are the kinetic energy of the object at the start and at the end of the period, then



                            $K_2-K_1=mas$



                            In the case of ballistic motion in a vertical direction, $K_1=frac 1 2 mv^2$ where $v$ is the initial velocity of the object. If the object reaches a maximum height of $h$ then $K_2=0$ when $s=h$, so we have



                            $-frac1 2 mv^2 = mah$



                            Substituting $a=-g$ and we have



                            $-frac1 2 mv^2 = -mgh \ Rightarrow h = frac v^2 2g $







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 2 days ago









                            gandalf61gandalf61

                            52028




                            52028




















                                user644361 is a new contributor. Be nice, and check out our Code of Conduct.









                                draft saved

                                draft discarded


















                                user644361 is a new contributor. Be nice, and check out our Code of Conduct.












                                user644361 is a new contributor. Be nice, and check out our Code of Conduct.











                                user644361 is a new contributor. Be nice, and check out our Code of Conduct.














                                Thanks for contributing an answer to Physics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470068%2fwhy-do-i-get-negative-height%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Àrd-bhaile Cathair chruinne/Baile mòr cruinne | Artagailean ceangailte | Clàr-taice na seòladaireachd

                                Cannot Extend partition with GParted The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Community Moderator Election ResultsCan't increase partition size with GParted?GParted doesn't recognize the unallocated space after my current partitionWhat is the best way to add unallocated space located before to Ubuntu 12.04 partition with GParted live?I can't figure out how to extend my Arch home partition into free spaceGparted Linux Mint 18.1 issueTrying to extend but swap partition is showing as Unknown in Gparted, shows proper from fdiskRearrange partitions in gparted to extend a partitionUnable to extend partition even though unallocated space is next to it using GPartedAllocate free space to root partitiongparted: how to merge unallocated space with a partition

                                대한민국 목차 국명 지리 역사 정치 국방 경제 사회 문화 국제 순위 관련 항목 각주 외부 링크 둘러보기 메뉴북위 37° 34′ 08″ 동경 126° 58′ 36″ / 북위 37.568889° 동경 126.976667°  / 37.568889; 126.976667ehThe Korean Repository문단을 편집문단을 편집추가해Clarkson PLC 사Report for Selected Countries and Subjects-Korea“Human Development Index and its components: P.198”“http://www.law.go.kr/%EB%B2%95%EB%A0%B9/%EB%8C%80%ED%95%9C%EB%AF%BC%EA%B5%AD%EA%B5%AD%EA%B8%B0%EB%B2%95”"한국은 국제법상 한반도 유일 합법정부 아니다" - 오마이뉴스 모바일Report for Selected Countries and Subjects: South Korea격동의 역사와 함께한 조선일보 90년 : 조선일보 인수해 혁신시킨 신석우, 임시정부 때는 '대한민국' 국호(國號) 정해《우리가 몰랐던 우리 역사: 나라 이름의 비밀을 찾아가는 역사 여행》“남북 공식호칭 ‘남한’‘북한’으로 쓴다”“Corea 대 Korea, 누가 이긴 거야?”국내기후자료 - 한국[김대중 前 대통령 서거] 과감한 구조개혁 'DJ노믹스'로 최단기간 환란극복 :: 네이버 뉴스“이라크 "韓-쿠르드 유전개발 MOU 승인 안해"(종합)”“해외 우리국민 추방사례 43%가 일본”차기전차 K2'흑표'의 세계 최고 전력 분석, 쿠키뉴스 엄기영, 2007-03-02두산인프라, 헬기잡는 장갑차 'K21'...내년부터 공급, 고뉴스 이대준, 2008-10-30과거 내용 찾기mk 뉴스 - 구매력 기준으로 보면 한국 1인당 소득 3만弗과거 내용 찾기"The N-11: More Than an Acronym"Archived조선일보 최우석, 2008-11-01Global 500 2008: Countries - South Korea“몇년째 '시한폭탄'... 가계부채, 올해는 터질까”가구당 부채 5000만원 처음 넘어서“‘빚’으로 내몰리는 사회.. 위기의 가계대출”“[경제365] 공공부문 부채 급증…800조 육박”“"소득 양극화 다소 완화...불평등은 여전"”“공정사회·공생발전 한참 멀었네”iSuppli,08年2QのDRAMシェア・ランキングを発表(08/8/11)South Korea dominates shipbuilding industry | Stock Market News & Stocks to Watch from StraightStocks한국 자동차 생산, 3년 연속 세계 5위자동차수출 '현대-삼성 웃고 기아-대우-쌍용은 울고' 과거 내용 찾기동반성장위 창립 1주년 맞아Archived"중기적합 3개업종 합의 무시한 채 선정"李대통령, 사업 무분별 확장 소상공인 생계 위협 질타삼성-LG, 서민업종인 빵·분식사업 잇따라 철수상생은 뒷전…SSM ‘몸집 불리기’ 혈안Archived“경부고속도에 '아시안하이웨이' 표지판”'철의 실크로드' 앞서 '말(言)의 실크로드'부터, 프레시안 정창현, 2008-10-01“'서울 지하철은 안전한가?'”“서울시 “올해 안에 모든 지하철역 스크린도어 설치””“부산지하철 1,2호선 승강장 안전펜스 설치 완료”“전교조, 정부 노조 통계서 처음 빠져”“[Weekly BIZ] 도요타 '제로 이사회'가 리콜 사태 불러들였다”“S Korea slams high tuition costs”““정치가 여론 양극화 부채질… 합리주의 절실””“〈"`촛불집회'는 민주주의의 질적 변화 상징"〉”““촛불집회가 민주주의 왜곡 초래””“국민 65%, "한국 노사관계 대립적"”“한국 국가경쟁력 27위‥노사관계 '꼴찌'”“제대로 형성되지 않은 대한민국 이념지형”“[신년기획-갈등의 시대] 갈등지수 OECD 4위…사회적 손실 GDP 27% 무려 300조”“2012 총선-대선의 키워드는 '국민과 소통'”“한국 삶의 질 27위, 2000년과 2008년 연속 하위권 머물러”“[해피 코리아] 행복점수 68점…해외 평가선 '낙제점'”“한국 어린이·청소년 행복지수 3년 연속 OECD ‘꼴찌’”“한국 이혼율 OECD중 8위”“[통계청] 한국 이혼율 OECD 4위”“오피니언 [이렇게 생각한다] `부부의 날` 에 돌아본 이혼율 1위 한국”“Suicide Rates by Country, Global Health Observatory Data Repository.”“1. 또 다른 차별”“오피니언 [편집자에게] '왕따'와 '패거리 정치' 심리는 닮은꼴”“[미래한국리포트] 무한경쟁에 빠진 대한민국”“대학생 98% "외모가 경쟁력이라는 말 동의"”“특급호텔 웨딩·200만원대 유모차… "남보다 더…" 호화病, 고질병 됐다”“[스트레스 공화국] ① 경쟁사회, 스트레스 쌓인다”““매일 30여명 자살 한국, 의사보다 무속인에…””“"자살 부르는 '우울증', 환자 중 85% 치료 안 받아"”“정신병원을 가다”“대한민국도 ‘묻지마 범죄’,안전지대 아니다”“유엔 "학생 '성적 지향'에 따른 차별 금지하라"”“유엔아동권리위원회 보고서 및 번역본 원문”“고졸 성공스토리 담은 '제빵왕 김탁구' 드라마 나온다”“‘빛 좋은 개살구’ 고졸 취업…실습 대신 착취”원본 문서“정신건강, 사회적 편견부터 고쳐드립니다”‘소통’과 ‘행복’에 목 마른 사회가 잠들어 있던 ‘심리학’ 깨웠다“[포토] 사유리-곽금주 교수의 유쾌한 심리상담”“"올해 한국인 평균 영화관람횟수 세계 1위"(종합)”“[게임연중기획] 게임은 문화다-여가활동 1순위 게임”“영화속 ‘영어 지상주의’ …“왠지 씁쓸한데””“2월 `신문 부수 인증기관` 지정..방송법 후속작업”“무료신문 성장동력 ‘차별성’과 ‘갈등해소’”대한민국 국회 법률지식정보시스템"Pew Research Center's Religion & Public Life Project: South Korea"“amp;vwcd=MT_ZTITLE&path=인구·가구%20>%20인구총조사%20>%20인구부문%20>%20 총조사인구(2005)%20>%20전수부문&oper_YN=Y&item=&keyword=종교별%20인구& amp;lang_mode=kor&list_id= 2005년 통계청 인구 총조사”원본 문서“한국인이 좋아하는 취미와 운동 (2004-2009)”“한국인이 좋아하는 취미와 운동 (2004-2014)”Archived“한국, `부분적 언론자유국' 강등〈프리덤하우스〉”“국경없는기자회 "한국, 인터넷감시 대상국"”“한국, 조선산업 1위 유지(S. Korea Stays Top Shipbuilding Nation) RZD-Partner Portal”원본 문서“한국, 4년 만에 ‘선박건조 1위’”“옛 마산시,인터넷속도 세계 1위”“"한국 초고속 인터넷망 세계1위"”“인터넷·휴대폰 요금, 외국보다 훨씬 비싸”“한국 관세행정 6년 연속 세계 '1위'”“한국 교통사고 사망자 수 OECD 회원국 중 2위”“결핵 후진국' 한국, 환자가 급증한 이유는”“수술은 신중해야… 자칫하면 생명 위협”대한민국분류대한민국의 지도대한민국 정부대표 다국어포털대한민국 전자정부대한민국 국회한국방송공사about korea and information korea브리태니커 백과사전(한국편)론리플래닛의 정보(한국편)CIA의 세계 정보(한국편)마리암 부디아 (Mariam Budia),『한국: 하늘이 내린 한 폭의 그림』, 서울: 트랜스라틴 19호 (2012년 3월)대한민국ehehehehehehehehehehehehehehWorldCat132441370n791268020000 0001 2308 81034078029-6026373548cb11863345f(데이터)00573706ge128495